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Magnetic nanoparticles can be embedded in electrospun nanofibers and other polymeric matrices to pre-
pare magnetic composites with defined magnetic and mechanical properties. Metal-oxide nanoparticles,
such as magnetite or nickel-ferrite, are of special interest since they do not need a coating to avoid oxi-
dation. Like other nanoparticles, these metal-oxide nanoparticles tend to form agglomerations, in this
way modifying the magnetic properties of the composites. After studying this effect for the magnetic ele-
ments Co, Fe, Ni as well as permalloy (Py) in a previous study, defining a new method to quantify the
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xiiﬂ:tfl:rite nanoparticle distribution in a polymer, here we concentrate on the influence of agglomerations on the
Maghemite magnetic properties of metal-oxide nanoparticles with different diameters in non-magnetic matrices.
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1. Introduction

Composites from ferro- or ferrimagnetic nanoparticles embed-
ded in nonmagnetic matrices can be used in a broad range of appli-
cations. Potential utilizations are heating, imaging, catalysis or
sensors [1-3] as well as spintronics, data storage and neuromor-
phic computing [4-6]. For all these applications, it is necessary to
characterize the nanoparticles as well as the complete composites
in terms of their magnetic properties. Such investigations of pure
nanoparticles and nanoparticle clusters are thus often reported in
the literature [7-9].

The influence of clustering nanoparticles is usually investigated
for regular clusters, e.g. two-dimensional lattices with square or
hexagonal structure [10-12]. Simulations of magnetic properties
become more complicated if three-dimensional lattices are filled
with magnetic nanoparticles [13,14]. Most challenging, however,
are composites in which magnetic nanoparticles are arbitrarily dis-
tributed in a nonmagnetic matrix, especially if the number and vol-
umes of agglomerations are unclear. Such composites have been
investigated, e.g., by ferromagnetic resonance [15,16] or common
static methods, such as superconducting quantum interference
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device (SQUID), alternating gradient magnetometer (AGM) or
vibrating sample magnetometer (VSM) [17-19].

Simulations of these composites are only scarcely found in the
literature. Self-assembled clusters of up to four permalloy (Py)
nanoparticles in varying geometries were reported to show differ-
ent magnetic properties, depending on the structure of this
agglomeration [20]. Arrays of regularly distributed round FePt
nanoparticle showed a significant influence of the exchange inter-
action on remanence, coercive field and shape of the simulated
hysteresis loops [21]. Nickel nanoparticles, nanoparticle chains
and clusters were found to show different magnetic properties
[22,23]. For clustered CoPt and FePt nanoparticles with varying
diameters, the amount of uniaxial and cubic phases was investi-
gated, while the impact of the nanoparticle distance was not fur-
ther taken into account [24].

In a previous study of our group, distributed nanoparticles with
large distances were compared with agglomerations of different
sizes, showing significant differences in the hysteresis loop shapes
and coercive fields [25]. Besides, we varied sets of Co, Fe, Ni, and Py
nanoparticles of different average diameters between fully
agglomerated and fully separated states, showing a strong influ-
ence of the distribution especially for cobalt and permalloy [26].
Here, the system developed in [26] was used to investigate mag-
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netic metal-oxide particles which are often used in electrospun
and other nonmagnetic matrices [27-29].

2. Materials and methods

The micromagnetic solver Magpar [30] was used to perform
micromagnetic simulations on nanoparticle clusters of magnetic
spheres with varying diameters. The materials under examination
here were magnetite (Fe;04), nickel-ferrite (Fe,O3/NiO), and
maghemite (y-Fe,03). The corresponding parameters are depicted
in Table 1.

The cluster formation process is described in detail elsewhere
[26]. In brief, a sphere of diameter 540 nm - i.e. an average diam-
eter of electrospun nanofibers - was filled with spheroid nanopar-
ticles with diameters (50 + 8.3) nm, (75 + 12.5) nm, and (100 + 6.7)
nm, respectively. Different concentrations were tested, namely
0.3 vol% and 1.75 vol% for an average diameter of 50 nm, 0.9 vol
% and 20 vol% for 75 nm mean diameter, and 2.1 vol% and 40 vol
% for 100 nm, respectively. As the starting point, full agglomeration
is reached by moving all nanoparticles to the middle of the large
sphere until they touch. This situation is defined as an expansion
ratio of 1. Then, the particles are moved out of the center radially
by different factors, based on the original agglomerated distance
to the middle of the sphere, up to a factor of 8.99. Depending on
the original concentration, the nanoparticles were in some cases
positioned outside the original sphere; this method was applied
to ensure reaching distances in which interactions between neigh-
boring nanoparticles can be neglected. An example of particles
with 100 nm average diameter, completely agglomerated and
maximally expanded, for concentrations of 2.1 vol% and 40 vol%
is given in Fig. 1; more situations are depicted in Ref. [26].

In all simulations, the hysteresis loops were simulated orienting
the external magnetic field along the x-axis, which is identical to
the easy anisotropy axes of Fe;04 and Fe,03/NiO and to the hard
axis of y-Fe,0s.

3. Results and discussion

Fig. 2 shows exemplary hysteresis loops of nickel-ferrite
nanoparticle systems, using an average diameter of 75 nm, both
corresponding concentrations of 0.9% and 20%, and full agglomer-
ation (expansion = 1) as well as maximum distribution (expan-
sion = 8.99). On the one hand, larger expansions lead to larger
coercive fields and more square-like hysteresis loops, as it can be
expected for measurements along an easy axis and was also visible
for simulations of Co [26]. On the other hand, for the smaller con-
centration (Fig. 2a), strong oscillations of the magnetization are
visible, which can be attributed to the small damping factor in
the simulation (o = 0.1, as usual for nickel-ferrite and some other
magnetic metal oxides) [31-33]. Interestingly, besides the reduced
oscillations for a higher material concentration (Fig. 2b), no large
differences are visible between concentrations of 0.9% and 20%.

Table 1
Model parameters of simulated materials.
Parameter Fe304 Fe,03/NiO v-Fe,03
anisotropy constants K; = —1.1 x 10* K; = -6.9 x 10> K, =4.0 x 10*
Jim? Jm?
exchange constant A 1.0 x 107" J/m 1.2 x 107" J/m 132 x 107"/
m
magnetic 06T 0.339T 04T

polarization at
saturation Js

Gilbert damping 0.1 0.1 0.1
constant o
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Next, maghemite nanoparticle systems are investigated for an
average diameter of 75 nm and maximum and minimum expan-
sion rates (Fig. 3). These curves have a completely different shape,
corresponding to the different magnetic properties and the mea-
surement along a hard axis, opposite to nickel-ferrite (cf. Table 1),
slightly similar to previous simulations of Fe systems [26]. For both
concentrations, the coercive fields are very small, and the hystere-
sis curves look like typical hard axis loops. With increasing expan-
sion, the coercive fields become smaller. No oscillations are visible,
independent of expansion or concentration (o = 0.1).

Finally, Fig. 4 depicts hysteresis loops of magnetite, simulated
for the same averaged diameter of 75 nm and maximum as well
as minimum expansion rates and concentrations, respectively.
Magnetite shows intermediate magnetic properties between those
of nickel-ferrite and maghemite, corresponding to its anisotropy
constant which is between the other values. While the expanded
systems result in a similar shape of the hysteresis loop for both
concentrations, the agglomerated states differ, with a double-
hysteresis loop for the lower concentration. Indeed, this system
(75 nm, concentration 0.9%) consists of only 3 nano-spheres [26],
explaining this effect which is else typically reported from thin-
film systems containing two magnetic layers with different coer-
cive fields and thus switching subsequently. For the higher concen-
tration, no such effect is visible.

In the next step, the influence of concentrations, expansion
rates and average nanoparticle diameters on the coercive fields is
examined. Fig. 5 depicts the results of these evaluations.

For nickel-ferrite (Fig. 5a), a general tendency is visible towards
firstly decreasing coercive fields with increasing expansion ratio,
followed by a stronger increase of the coercive field for higher
expansion ratios. The minimum coercive fields can be found at
expansion ratios around 1.5-3.5, depending on the average
nanoparticle diameter and the material concentration. Most
importantly, there is no saturation visible at large expansion ratios,
opposite to all other materials investigated previously [26]. Appar-
ently, in case of nickel-ferrite, even larger distances between the
single nanoparticles have to be investigated in the future.

This is different for maghemite (Fig. 5b). Here, saturation is
reached for expansion ratio above approx. 5. The general trend of
the curves is in all cases identical, with 100 nm/40% concentration
showing the smallest coercive fields for small expansion ratios.
This clear decrease of the coercive fields with increasing expansion
is contrary to the previous findings, where Ni and Fe showed a rel-
atively small influence of the expansion ratio on the coercive field,
while coercive fields increase with increasing expansion ratio for
Co and Py [26]. These findings underline the importance of model-
ing distributed nanoparticles in nonmagnetic matrices for each
magnetic material again, since neither elemental magnets [26]
nor metal oxide magnets, as investigated here by the examples
of nickel-ferrite and maghemite, show a common trend for all
materials.

Finally, magnetite shows a varying expansion ratio-dependence
for different systems. The systems containing nanoparticles of
average diameter 50 nm behave similar to those prepared from
nickel-ferrite, with minimum coercive fields for an intermediate
expansion ratio. Both systems with average diameters of 75 nm
show only a very small minimum, followed by a strong increase
in the coercive field. For the systems with 100 nm average diame-
ter, finally, the concentration also influences the coercive fields.
These results show the strong influence of the nanoparticle distri-
bution in a nonmagnetic matrix, especially for magnetite which is
often used as a magnetic filler in electrospun nanofiber or other
polymeric matrices, and suggest using small nanoparticles in case
of magnetite to reduce this effects which may make measurements
irreproducible [25].
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Fig. 1. Systems with average particle diameters of 100 nm: concentration 2.1 vol% (a) fully agglomerated; (b) maximally expanded; concentration 40 vol% (c) fully
agglomerated; (d) maximally expanded.
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Fig. 2. Nickel-ferrite nanoparticles of average diameter 75 nm with different expansion rates and concentrations of (a) 0.9%; (b) 20%, related to the original sphere size.
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Fig. 3. Maghemite nanoparticles of average diameter 75 nm with different expansion rates and concentrations of (a) 0.9%; (b) 20%, related to the original sphere size.
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Fig. 4. Magnetite nanoparticles of average diameter 75 nm with different expansion rates and concentrations of (a) 0.9%; (b) 20%, related to the original sphere size.
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4. Conclusion

A series of simulations of the magnetic metal-oxides nickel-
ferrite and maghemite was performed by the micromagnetic solver
Magpar, investigating nanoparticles of different diameters dis-
tributed in a nonmagnetic matrix. The results for both materials
differ strongly. While nickel-ferrite shows relatively broad, nearly
rectangular hysteresis loops, as they are typical for easy-axis mea-
surements, maghemite shows oppositely very small coercive fields
and hysteresis loops similar to hard-axis measurements. Depend-
ing on the distances between the nanoparticles, the coercive fields
vary in different ways, so that no common trend for both materials
can be defined. Our results show that more investigations are nec-
essary to fully understand nanoparticles distributed in polymeric
or other nonmagnetic matrices, as they are used in diverse
applications.
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