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Abstract
This paper presents a framework for learning event sequences for anomaly detection in a smart home environment. It 
addresses environment conditions, device grouping, system performance and explainability of anomalies. Our method models 
user behavior as sequences of events, triggered by interaction of the home residents with the Internet of Things (IoT) devices. 
Based on a given set of recorded event sequences, the system can learn the habitual behavior of the residents. An anomaly 
is described as deviation from that normal behavior, previously learned by the system. One key feature of our framework is 
the explainability of detected anomalies, which is implemented through a simple rule analysis.

Keywords Ambient assisted living · Anomaly detection · Internet of things · Explainable AI

Mathematics Subject Classification 68T01 · 68T05

1 Introduction

The demographic change is leading to an increase in the 
number of elderly people. This results in an increased num-
ber of chronic illnesses and multimorbidity leading to a need 
for medical care services [1]. In 2019, 4.13 million people 
needed care services in Germany. Around four out of five 
people are cared for at home. Most of the care is done by rel-
atives, often supported by a nursing service. The workload 
of nurses recently steadily increased in all areas – not only 
due to the COVID-19 pandemic [2]. Cognitive systems can 
simplify and secure the life of the persons in need of care, 

and can also decrease the workload of relatives and/or the 
nursing staff (caregiver), e.g. by using artificial intelligence 
for tour planning, anomaly detection or intelligent emer-
gency call systems. Smart home technologies in particular 
offer a wide range of options here to support the persons in 
need of care, and their caregivers. Anomaly detection could 
help here in two ways. Firstly, acute anomalies in daily rou-
tines can be detected (e.g. person goes to the bathroom but 
cannot get out) and could make an emergency call. In addi-
tion, they can provide helpful insights into the behavior of 
the person to be cared for that may have changed due to ill-
ness (e.g. search behavior due to the onset of dementia) and 
so caregivers can intervene at an early stage. Explainable 
AI methods can thereby provide meaningful explanations to 
these end users about smart home operations [3].

This paper is structured as follows: In the next section, 
we’ll cover different anomaly detection techniques based on 
user behavior, as well as some approaches to explain those 
anomalies. Then we’ll explain the platforms used to explore 
our own approach. After that, we’ll dive deeper into the sys-
tem implementation, where we cover the learning technique, 
anomaly detection and how to explain those anomalies. In 
the end, we’ll give a short summary of what has been done 
and what is to be done in the future.
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2  Related Work

Anomaly detection is used in various contexts like image 
detection, data cleaning or identifying flaws in manufac-
tured materials [4]. Common approaches are based on 
multidimensional data and, referred to as point-based 
anomaly detection [5], do not consider the sequence of 
discrete events.

In this work, we’ll focus on techniques which handle dis-
crete event sequences. A common approach for this, called Dis-
tance Based Anomaly Detection (DBAD), is a clustering-tech-
nique where a distance-based criterion is used to detect outliers 
(anomalies) [4]. A first method was introduced in [6], where 
a One Class Support Vector Machine (OCSVM) was used to 
transform data points into a feature space, where points close 
to the origin were identified as anomalies. Another approach is 
shown by [7], where a Self-organizing Map (SoM) was used to 
classify user activities by their venue and duration. An anomaly 
was then detected, if a new data point wasn’t bounded to any 
cluster or excessively deviates from it.

In contrast to DBAD, there are probabilistic approaches. 
[8] introduced an algorithm to draw upon the temporal nature 
of sensor data collected in a smart home environment, where 
events were connected through temporal relationships like A 
before B, C after D and X during Y. With that, the algorithm 
learned the probability for each relation of event A and B for 
all existing events in the training data (P(A)). An event was 
then detected as an anomaly, when the counter-probability 
( 1 − P(A) ) exceeded a predetermined threshold.

Different from that, Yamauchi et al. presented a method 
which learned event sequences for different conditions [9]. 
For that, they defined an event sequence as events occurring 
within a time frame of T seconds from a previous event. A 
condition is described as a combination of time of day and 
sensor measurements like temperature or humidity. Each 
sequence was modeled in a tree data structure, where each 
node corresponds to one event. To erase potential noise and 
extract the essential event sequence, they generated event 
sequences from the monitored ones by building all possible 
permutations of them. To check whether an event belongs to a 
sequence or not, they used the timing information T between 
the events. In general, they presented an algorithm which 
tries to maximize the number of events in a sequence by con-
tinuously increasing T, without overfitting it. For anomaly 
detection, their algorithm tries to include a new event into 
a sequence and matches it against all previously learned 
sequences. If no match was found, the event was treated as an 
anomaly. In a newer version [10], Yamauchi et al. improved 
their implementation of the noise elimination algorithm. 
Therefore, they introduced a binary variable v “which indi-
cates the events included in the generated sequence” [10] by 
the ith bit ( 1 = included , 0 = not included).

A lack of research exists, considering the explainability 
of smart home operations to end-users [3]. In [4], Davidson 
described an explanation approach for minimum likelihood 
threshold anomaly detection, where an observation was 
anomalous, when it doesn’t belong to a cluster with a likeli-
hood greater than some threshold. He did so, “by consider-
ing the most probable class and determining what changes 
to the observation could have increased the class likelihood 
above this threshold” [4]. In a different context, Lim et al. 
found out that, especially why, explanations can improve 
user’s understanding and trust in intelligent systems [11].

Although there is a lot of research on anomaly detection in 
smart homes, a research gap exists in the field of the explana-
tion of such anomalies. Therefore, we propose a new approach 
for anomaly detection, which (i) uses environment conditions 
and device grouping (ii), is deployed in three real-world smart 
homes and (iii) provided a visual and textual explanation.

3  Research Platform

Our work was carried out within the KogniHome e.V. [12] 
in Bielefeld, Germany, and a private household (H1) with 
more than 200 IoT devices. The KogniHome e.V. is a non-
profit association based on an interdisciplinary network of 
partners from research, industry and care, with the main goal 
to develop user-oriented Ambient Assisted Living (AAL) 
solutions for the demographic change. As it is shown in the 
next section, these two scenarios can be divided into dif-
ferent levels of complexity. The KogniHome e.V. research 
apartment has a low and H1 a high complexity.

3.1  Setup

The research apartment KogniHome based on  [13] acts as a 
reference system with six rooms: Corridor, Bathroom, Living 
Room, Kitchen, Bedroom, and a Balcony. Each room, except 
the Balcony, is equipped with a motion sensor. The windows 
in bed- and bathroom, as well as the door to the balcony, are 
equipped with magnetic contact switches for state detection 
(open or closed). Three smart power plugs with integrated 
power sensors in the kitchen are connected to a coffee machine, 
toaster and water heater. Obviously, those gadgets could be 
smart by themselves, but the current goal of the KogniHome 
e.V. is to convert a non-smart home into a smart home by cheap 
and easy-integrable IoT devices to be affordable by everybody. 
Furthermore, several sophisticated research prototypes have 
already been implemented in the KogniHome: an intelligent 
cooking assistant [14], a connected chair [15], an intelligent 
door/wardrobe [16] and a smart mirror [16].

H1 is a two-story house with 14 rooms plus the hallway. It 
embeds more than 200 IoT nodes with more than 500 sensor 
and actor endpoints. Devices range from unobtrusive sensors 
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up to advanced systems like cleaning robots. For anomaly 
detection we use simple binary sensors (on/off, open/closed, 
etc.) like PIR motion sensors, smart switches and door and 
window contact sensors as well as more complex sensors like 
smart thermometers or luminance sensors to track, i.e. the 
outside temperature and brightness. The communication is 
based on a heterogeneous set of wireless standards including 
Z-Wave, ZigBee and Wi-Fi.

4  Definitions

Definition 1 An event is described as the state-change of 
a IoT device (i.e. off to on) on a specific timestamp under 
consideration of its environmental conditions.

Definition 2 An environmental condition is anything that 
influences an event. A simple example is the temperature. 
Turning on the heater in the winter (cold) is completely nor-
mal. Instead, turning on the heater in the summer (hot) is 
not. So, the temperature is affecting the frame of an event 
and therefore must also affect the output of the anomaly 
detection.

Definition 3 An event sequence is a series of events con-
nected to each other. We differentiate between two types 
of sequences, the raw sequence and the merged sequence. 
The raw sequence is directly derived from the sensor events. 
Multiple raw sequences can then be merged into each other, 
as described later.

Definition 4 An anomaly is defined as a raw sequence, 
which is a deviation from the learned normal behavior of 
the user.

5  System Implementation

In this section, we describe the method used to detect 
anomalies, what type of anomalies we can detect with this 
approach and how to explain these to the smart home user.1

5.1  Learning Model

Based on [9], our system model consists of a set of events 
(monitored behavior of the user(s)), annotated with one or 
more environmental conditions, like time of day or tempera-
ture. In addition, our model allows for the pre-grouping of 
IoT devices, i.e. by their location. This is especially useful 
in larger sensor environments like H1, to cope with multiple 

users simultaneously interacting in one household, and to 
prevent interference through known unrelated devices like 
environmental sensors (humidity, luminance etc.). The 
grouping is handled by the user and therefore is not limited 
to any requirements. Each device can have multiple groups. 
To store the event sequences, we use a Directed Acyclic 
Graph (DAG) instead of a tree structure as used in [9]. This 
increases the performance of the system, which will be 
explained in detail in the next section. The edge-weights 
of the sequence graph represent the number of occurrences 
of two subsequent events. These edge weights are initial-
ized with ’1’ and increased during each merging step of the 
sequence generation.

5.2  Sequence Generation

In [9] they used an explicit sequence generation algorithm, 
which means, in this context, that the sequences were gen-
erated subsequently from a previously recorded sequence 
by building up all possible combinations. We modified this 
approach by generating all possible sequences during record-
ing. Therefore, each added event was connected to all exist-
ing predecessor events in the currently created sequence. 
This implicitly generates all possible combinations of the 
recorded event sequence. With this, we save a lot of memory 
used by the system. Figure 1 shows the sequence generation 
of [9] compared to our approach.

Additionally, in comparison to [9], we do not allow dupli-
cate events in one sequence. Instead, in case of the occur-
rence of duplicate event, we terminate the current sequence 
and start a new one.

We made this restriction because, by this, we can gener-
alize the output sequences and divide very large sequences 
into smaller ones. For example, if the user goes back and 
forth from the living room to the bathroom, this activity 
is split up into single forth- and back-activity sequences 
(Fig. 2). In [9], this would be one large sequence, preventing 
the system to merge following subsequences to this activity.

This step did not lead to an underestimation of the num-
ber of sequences. In early development stage, using the 
approach of [9], we discovered memory exhaustion with 
high numbers of sequences. To address this, we included 

Fig. 1  Explicit sequence generation after [9] (left) vs. our implicit 
sequence generation (right)

1 The source-code of the system can be found under https:// github. 
com/ jbaud isch/ sharly_ pub.

https://github.com/jbaudisch/sharly_pub
https://github.com/jbaudisch/sharly_pub
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a merging step into the algorithm, which merged equal 
or subsequences into one, by increasing the respective 
edge-weight of the DAG instead of storing all sequences 
separately.

Before explaining our learning approach in detail, we 
shortly dive into the mechanism of sensor grouping. As we 
implemented the approach of [9], it turned out that event 
sequences were often mixed up with unrelated events, espe-
cially due to IoT devices in the household update their status 
regularly. Another cause of the mixing of events are multi-
ple-user environments, where two residents simultaneously 
act with the system in different rooms. To avoid these flaws, 
we not only added a whitelist-mechanism but also the pos-
sibility to group devices. Each individual sensor of an IoT 
can be assigned to one or more group. For example, this can 
be used to create activity sectors.

5.3  Sequence Learning

With some algorithmic adjustments, our approach is based 
on the learning method of [9]. The system learns a timing 
parameter T which defines the maximum time allowed to 
elapse between the events within an event sequence. In [9], 
this T was globally used for every sequence. Unfortunately, 
this approach did not lead to satisfying results. In our real-
world scenario, we contend fast and slow activities like 
walking from A to B or cooking. So, a globally defined T for 
all event sequences is not useful. To improve this, T is indi-
vidually learned for every group. This does not conquer the 
problem of mixed (slow and fast) sequences within a group.

5.4  Anomaly Detection

Our anomaly detection is shown in Algorithm 1–3. The 
basic concept of it is as follows. First, we create empty 
sequences for each group. After that, every monitored event 
is assigned to the sequences corresponding to its group. 
If the assignment fails due to a timeout, the sequence is 
considered as complete and needs to be analyzed for an 

anomaly. This is done via comparison against all learned 
sequences. To do so, Algorithm 2 tries to find one learned 
event sequence, which matches the monitored one. If it 
finds a match, the monitored sequence is normal behavior 
and vice versa an anomaly. To not be an anomaly against a 
learned sequence (L), the monitored sequence (M) needs to 
be a sub-graph of the learned one (all edges of M must exist 
in L). Also, every edge of L must-have a weight greater than 
a minimum-weight-threshold W, to consider rare-occurring 
edges as anomalies, too.

ADA (T,G)
inputs: Time-Parameters T , All groups G
S ← map();
foreach group g ∈ G do

S[group] ← ∅ ; /* initialize sequences */
end
while e ← GetMonitoredEvent() do

g ← FindGroupOfEvent(e);
s ← S[g] ; /* get sequence */
t ← T [g] ; /* get time parameter */
if e.time− s.lastEvent.time ≥ t then

if CheckForAnomaly(s) then
ExplainAnomaly(s);

end
s ← ∅;

end
s.append(e)

end
Algorithm 1: Anomaly Detection Algorithm.

CheckForAnomaly (s)
inputs : Monitored event sequence s
output: True, if anomaly
S ← GetLearnedSequences();
W ← LoadMinWeightConfigParameter();
foreach Learned sequence ls ∈ S do

if not IsAnomalyAgainst(ls, s,W ) then
return False;

end
end
return True;

Algorithm 2: Check if sequence is an anomaly.

IsAnomalyAgainst (ls, s,W )
inputs : Learned sequence ls, Monitored

sequence s, Min-weight-threshold W
output: True, if s is anomaly against ls
if s �∈ ls then

return True;
end
foreach Edge e ∈ s do

if le ← GetEdgeWeight(e) < W then
return True;

end
end
return False;

Algorithm 3: Check if a monitored sequence is an
anomaly against a learned sequence.

Fig. 2  Sequence splitting on a duplicate event (here B) to get more 
generalized sequences
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5.5  Explanation

As the learning algorithm and the anomaly detection 
are unsupervised, it is important to give the user (e.g. a 
caregiver) an explanation of detected anomalies to fully 
understand decisions of the system and to evaluate the cur-
rent situation of the home and the resident. With a detailed 
explanation, the user can better understand why the sys-
tem suspects that it has detected an anomaly. Even if the 
system cannot describe the exact reason for an anomaly, it 
can nevertheless give the user important information for 
further tuning the performance of the system.

In the following section, we will describe what types 
of anomalies we can detect and explain with the described 
approach. For this, we will look on a simple example, 
where the algorithm learned the sequence given in Fig. 4. 
It’s a simple morning routine consisting of two motion 
events (living- and bedroom) and two power events (coffee 
machine and toaster). With the model described in 5.1, we 
can detect three types of anomalies: 

 R1. Unknown event sequence
 R2. Insufficient weight
 R3. Wrong condition

If an event sequence is completely unknown to the sys-
tem (R1), i.e. when the event-order is mixed (Fig. 4), the 
explanation component cannot find a reasonable explana-
tion for the anomaly. Instead, the system tries to find the 
most equivalent event sequence for it. For this, a similarity 
value is defined (cf. Fig. 3). This similarity is a weighted 
value that indicates, how equal an event sequence A is 
to B - considering three parts of those sequences: nodes, 
edges and conditions. The equality (M(A, B)) we used in 
this work is stands in contrast to the Jaccard-coefficient 
[17]. This is because we do not consider the similarity in 
both directions (A to B and B to A). More, we just con-
sider one direction (A to B), which means, how much of 
A exists in B. Although no direct explanation (except that 
the event sequence is unknown) can be provided, the sys-
tem can give the best matching sequence so that the user 
can evaluate the current situation. Insufficient weighting 
(R2) of the sequence can be easily recognized. Normally, 
the system looks for an event sequence (matching the 
possible anomaly) in the normal behavior which edges 
exceed the user-defined minimal-weight-threshold. If it 
doesn’t find one, this would normally lead to Unknown 
behavior classification. During the explanation part, the 
system instead overrides this minimal-weight-threshold 
with 0. Then it rechecks whether the recorded sequence 
is matching any of the (now zero-weighted) sequences of 
the normal behavior. If the system this time finds a match-
ing sequence, the anomaly was caused by an insufficient 

weighting (Fig. 6). The same principle is applied when 
checking for a wrong condition (R3). The condition of 
the event sequence is temporarily ignored, and the system 
considers every possible combination of conditions and 
applies it to the recorded event sequence. Then it checks 
whether another condition dissolves the anomaly. If this 
is the case, the system can specify a wrong condition as 
the reason for the anomaly (Fig. 7). In addition, the sys-
tem can also describe, which condition would dissolve the 
anomaly.

Textual explanation of anomaly in Fig. 5:

– The sequence is unknown by the system
– Reached similarity score 0.83 (max 

1.0)
– 100% event similarity
– 66% event transition similarity
– 100% condition similarity

Textual explanation of anomaly in Fig. 6.

– Found a matching event sequence, but 
the weights were to low

Textual explanation of anomaly in Fig. 7.

– The conditions of the event sequence 
are unknown by the system

– The event sequence is known by the 
system, but the conditions did not 
match any of the known

– Changing conditions NIGHT to MORNING, 
would make disappear the anomaly

6  Real‑World Deployment and Evaluation

As described in Sect. 3, we deployed the system in three 
different scenarios. In the KogniHome scenario, we grouped 
all sensors in one group. This is not recommended for higher 
scenarios like H1, because this can cause a mixture of unre-
lated interaction sequences. For simplicity, we decided to 
produce a one-way scenario in the KogniHome, shown in 
Fig. 4. The system extracted 9 event sequences and success-
fully merged these into 1 sequence. Then we triggered the 
anomalies shown in Figs. 5, 6 and 7 and the system could 
successfully identify and explain those anomalies. The tex-
tual explanations of the anomalies, given by the system, 
are shown below the affiliated figures. In the more com-
plex H1-scenario 34,888 total events were recorded within 
a measurement period of 17 days. Events were separated 
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into the following 6 groups: entrance, corridors, garden, 
basement, kitchen, bedroom. The learning algorithm pro-
duced the following outputs for a learning interval of 16 
days (Table 1).

The data of the 17th day was then used as a test set for 
the anomaly detection. It is important to mention, that day 
17 did not include any real anomalies. It is a normal day like 
the 16 days before. Instead, the goal was to see, if the algo-
rithm generates false-positive anomalies and how many of 
them. This was our evaluation criteria. Based on this setup, 
the algorithm produced the following anomalies (Table 2).

Table 2 shows that the algorithm does not find any false-
positive anomaly in the Unknown behavior class, except for 
the Kitchen. This is because the learning algorithm could 
not extract enough event sequences from the Kitchen events 
(Fig. 8: Kitchen), for example, through an insufficient num-
ber of sensors. Bedroom and Basement both contain anoma-
lies detected by insufficient weighting and wrong condition. 
This is most likely due to a short learning period.

To evaluate the provided explanations, we made a user 
study with 20 subjects in the age of 18–50. Therefore, we 
created a survey to analyze the usefulness of the textual 

explanations. To do so, the subjects first needed to classify 
given anomalies based only on their visual graph representa-
tion. For this, we provided four possible answers containing 
the three anomalies (R1–R3) and also the option that none of 
these match (multiple selection was possible). Then the sub-
jects needed to classify given anomalies again, but regard-
ing the textual explanation of the system. Table 3 shows 
the results of the study. In the survey, we handed out three 
different anomalies (A1–A3) to the user. A1, which was 
unknown behavior, A2 which was insufficient weighting and 
A3, which was insufficient weighting and wrong condition 
combined. As we can see, the combination of two anomalies 

Fig. 3  Similarity (S) of sequences S1 and S2

Fig. 4  Event sequence: morning routine

Fig. 5  Anomaly: unknown event sequence

Fig. 6  Anomaly: insufficient weight

Fig. 7  Anomaly: wrong condition

Table 1  Amount of generated event sequences in H1-scenario before 
and after merge, based on calculated T parameter

Group T #Sequences #AfterMerge

Entrance 42 s 852 111
Corridors 72 s 1639 79
Garden 4 s 64 20
Basement 90 s 580 115
Kitchen 4 s 103 12
Bedroom 106 s 2403 209

Table 2  Number of anomalies 
(U = unknown behavior, I = 
insufficient weighting, C = 
wrong condition) and None-
Anomalies (#S) detected on the 
17th day of the data set

Group U I C #A #S

Entrance 0 0 0 0 14
Corridors 0 0 0 0 54
Garden 0 0 0 0 0
Basement 0 3 3 6 14
Kitchen 6 0 0 0 0
Bedroom 0 6 2 8 62
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classes lead to an incorrect assessment. Most of the sub-
ject selected only one of the two classes, but only one third 
selected both classes. The explanation made it even worse. 
This is, because the current version of the system could not 
explain multiple anomaly classes. Instead, the system only 

provided the insufficient weighting explanation. This obvi-
ously made the subjects uncertain, and four of them changed 
their opinion to only select the insufficient weighting clas-
sification. In contrast, the explanation of A1.1 increased the 
accuracy in consideration to A1. Even if the result of A3.1 
increased the incorrectness of the answers, we can see how 
relevant the explanation can be to the user and what impact 
it has for the decision-making.

7  Conclusions and Future Work

Our evaluation shows, that the approach of [9] works for 
simple scenarios with only few sensors. The termination cri-
terion for the learning of sequences is based on the number 

Table 3  Amount of correct 
and wrong classification of 
anomalies (A1, A2, A3 without, 
and A1.1, A2.1, A3.1 with 
explanation)

Anomaly Correct Wrong

A1 14 6
A1.1 18 2
A2 17 3
A2.1 17 3
A3 6 14
A3.1 2 18

Fig. 8  Number of pairs of event 
sequences of each group in H1 
plotted against T parameter, 
showing the termination crite-
rion of T (see Table 1)



266 KI - Künstliche Intelligenz (2022) 36:259–266

1 3

of pairs given in the sequences. We improved this approach 
by sensor grouping to avoid interferences of unrelated inter-
actions. This is useful, as long as the sensors inside a group 
have similar timing conditions. If the group mixes slow- and 
fast-activity sensors, the algorithm either over- or under-
estimates the problem. For example, this is the case when 
we group motion sensors with kitchen sensors. The motion 
sensors are activated on a relatively fast time base. Operating 
appliances in the kitchen is comparatively slow. To conquer 
this problem, we started to explore new abort criteria for 
the sequence learning algorithm. Figure 8 visualized the 
current approach, by plotting the number of pairs (y-axis) 
against the time-frame (x-axis) for each group of H1. The 
hatched section of each plot shows the current termination 
criterion, where the number of pairs did not change signifi-
cantly over a time span of 60 seconds. As we can see in the 
garden and kitchen plot, it isn’t a good choice to have one 
global criterion for all groups, especially when the number 
of sensors differs a lot. Also, we currently face the problem 
of many false positive anomalies due to lack of training data. 
In future, this will be handled through a feed mechanism, 
which allows the caregivers to validate found anomalies and 
back-propagate it to the system, improving it incrementally. 
Future work will therefore explore an algorithm, which not 
only learns the time-frames of each group, but also automati-
cally learns a potential grouping and their abort criteria. Fur-
thermore, we currently develop a visualization tool which 
allows us to track different stages of the algorithm.

Acknowledgements This work is funded by the Ministry of Economic 
Affairs, Innovation, Digitalisation and Energy (MWIDE) of the State of 
North Rhine-Westphalia within the Leading-Edge Cluster “Intelligent 
Technical Systems OstWestfalenLippe (it’s OWL)” and managed by 
the Project Management Agency Jülich (PTJ) and is supported by the 
non-profit organization “KogniHome – Technikunterstütztes Wohnen 
für Menschen e.V.”. The authors are responsible for the contents of 
this publication.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Fendrich K, Hoffmann W (2007) More than just aging societies: 
the demographic change has an impact on actual numbers of 
patients. J Public Health 15(5):345–351

 2. Bundesamt S (2019) Pflegestatistik - pflege im rahmen der pfle-
geversicherung. https:// www. desta tis. de/ DE/ Themen/ Gesel lscha 
ft- Umwelt/ Gesun dheit/ Pflege/ Publi katio nen/ Downl oads- Pflege/ 
pflege- deuts chlan derge bnisse- 52240 01199 004. html

 3. Das D, Nishimura Y, Vivek RP, Takeda N, Fish ST, Ploetz T, 
Chernova S (2021) Explainable activity recognition for smart 
home systems. arXiv preprint arXiv: 2105. 09787

 4. Davidson I (2007) Anomaly detection, explanation and visualiza-
tion. Tech. Rep, SGI, Tokyo, Japan

 5. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a 
survey. ACM Comput Surveys (CSUR) 41(3):1–58

 6. Jakkula V, Cook D (2011) Detecting anomalous sensor events in 
smart home data for enhancing the living experience. In: Work-
shops at the twenty-fifth AAAI Conf. on artificial intelligence

 7. Novák M, Jakab F, Lain L (2013) Anomaly detection in user daily 
patterns in smart-home environment. J. Sel. Areas Health Inform 
3(6):1–11

 8. Jakkula V, Cook DJ (2008) Anomaly detection using temporal 
data mining in a smart home environment. Methods Inf Med 
47(01):70–75

 9. Yamauchi M, Ohsita Y, Murata M, Ueda K, Kato Y (2019) Anom-
aly detection for smart home based on user behavior. In: Intl. 
Conf. on Consumer Electronics (ICCE), pp. 1–6. IEEE

 10. Yamauchi M, Ohsita Y, Murata M, Ueda K, Kato Y (2020) Anom-
aly detection in smart home operation from user behaviors and 
home conditions. IEEE Trans Consum Electron 66(2):183–192

 11. Lim BY, Dey AK, Avrahami D (2009) Why and why not explana-
tions improve the intelligibility of context-aware intelligent sys. 
In: Proceedings of the SIGCHI Conf. on human factors in comput-
ing sys., pp. 2119–2128

 12. KogniHome-Technikunterstütztes Wohnen für Menschen e.V. 
https:// www. kogni home. de (2021)

 13. Wrede S, Leichsenring C, Holthaus P, Hermann T, Wachsmuth S 
(2017) The cognitive service robotics apartment. KI-Künstliche 
Intelligenz 31(3):299–304

 14. Neumann A, Elbrechter C, Pfeiffer-Leßmann N, Kõiva R, Car-
lmeyer B, Rüther S, Schade M, Ückermann A, Wachsmuth S, 
Ritter HJ (2017) kognichef: A cognitive cooking assistant. KI-
Künstliche Intelligenz 31(3):273–281

 15. Hesse M, Krause AF, Vogel L, Chamadiya B, Schilling M, Schack 
T, Jungeblut T (2017) A connected chair as part of a smart home 
environment. In: 14th Intl. Conf. on Wearable and Implantable 
Body Sensor Networks (BSN), pp 47–50. IEEE

 16. Adams M, Benda M, Saboor A, Krause AF, Rezeika A, Gem-
bler F, Stawicki P, Hesse M, Essig K, Ben-Salem S, et al.(2019) 
Towards an ssvep-bci controlled smart home. In: Intl. Conf. on 
Systems, Man and Cybernetics (SMC), pp. 2737–2742. IEEE

 17. Jaccard similarity coefficient. https:// en. wikip edia. org/ wiki/ Jacca 
rd_ index

http://creativecommons.org/licenses/by/4.0/
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Pflege/Publikationen/Downloads-Pflege/pflege-deutschlandergebnisse-5224001199004.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Pflege/Publikationen/Downloads-Pflege/pflege-deutschlandergebnisse-5224001199004.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Pflege/Publikationen/Downloads-Pflege/pflege-deutschlandergebnisse-5224001199004.html
http://arxiv.org/abs/2105.09787
https://www.kognihome.de
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Jaccard_index

	A Framework for Learning Event Sequences and Explaining Detected Anomalies in a Smart Home Environment
	Abstract
	1 Introduction
	2 Related Work
	3 Research Platform
	3.1 Setup

	4 Definitions
	5 System Implementation
	5.1 Learning Model
	5.2 Sequence Generation
	5.3 Sequence Learning
	5.4 Anomaly Detection
	5.5 Explanation

	6 Real-World Deployment and Evaluation
	7 Conclusions and Future Work
	Acknowledgements 
	References




