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Abstract

We give a quantitative variant of a recent Korovkin=type theorem for B=conti=
nuons funciions, a refinement for B-dif ferentiable functions, and applications of
Our resulis to estimate the degree of ap proximation of B-continuous and B-differ=
entiable functions by cerigin linear operators, The applications include operators
of Bernstein and Hermite-Fejer-type, also; a Jackson— type theorem for the :pa-
ce of B-continyous functions is gwen ma the use of certain o peraters investigai=

ed by Szabados,

1, Introduction

The research in the present paper is a continuation of the recent articleC?d
i which a Korovhn—type theorem for the approximation of so—called Bogel=
continuous (B-continuous) functions defined on the rectangle R=[0, 1 7% was
proved, Here a real- valued function f on the (more general) rectangle R =
[a, b]x[c, d] is called B- C0nt1nu0us 1f for every (=, y) €R there holds

lim Au;v I (x Y) =0,
(u,v)—=>(x,y)

Wwherethuss 1000 o) &8 38, ) -ecd &, V) =f (uy, ¥ +f (u, v) =
- The concepts of B-cantinuity (also’ denoted as A;,y-continuity) and of B-=
differeptiabiliy- (to be defined beJow) were introduced by Karl Bogel in 1934,
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For more information on these notions the reader is referred to Bogel’s pap-

ersCHC . Tt is easily verified that, under the pointwise operations of scalar .

multiplication and addition, the set B(R) of Bégel=continuous functions
constitutes a real vector space, Not very much appears to be known as far
as further algebraic or topological properties of this space are concerned,

The continuation of our research on pointwise and uniform approximation
of elements of the space B(R) is mainly motivated by the fact that the space
B(R) is very closely related to what is nowadays denoted as “the approxi=
mation by Boolean sums of parametric extensions” , The latter technipue is
well known in Computer Aided Geometric Design and has recently also been
investigated from the point of view of theoretical mathematics more thorou=
ghly, See (101 , (11), and the references cited there for further details and
a partial survey Earlier (theoretical) work on the present subject was also
carried out by I, Badea in the early 70’s (see {13 for more references) ,
Continuing his work, in [1] the following result was communicated,

Theorem A ([1, §31) . Let (Lms) , €m, n) €N?, be a sequence of
positive linear operators transforming functions of B(R) , R=[0,113 into
functions of R® and satisfying

€i) Lo Cesx,v) =1, where e, ) =t
For f €B(R) and (x,y) €R, let
Ui, $ee ) U SERUINERE o Jyde F ix )
—f(s,%) 5 % ¥, a.n

If the conditions
(ii) Lmsm {P3x,¥) =X +Upnsn (X,¥) »

(i) L. (Fsx,¥) =y+ Vmsn X,5) »

(V) Lupsn (@*+¥?; x,¥) =x24+y2+ Wme (X,¥) »
are satisfied, where 9(s,t) =s, W(s,t) =t, and Usmyn (2,50, Vnsa(x, ¥
and Wmsn (x,y) converge to zero uniformly on R as m, n approach infinity,
Then for every f € B(R) the sequence (Unmsn ) converges uniformly to f
an R,

In the present note we give several quantitative versions of Theorem A,
The upper bounds will involve the so—called mixed modulus of continuity as
introduced by A, Marchaud®'? and the total modulus of continuity, The fir=
st of these functionals is today also denoted as the (1,1) -modulus of con-
tinuity (see L,L, Schumaker [16, p.516]) , As can be seen from its defini=
tion, namely

Watget CEs- 055 32) =sup {{Avinravin, £, |
where the supremum is taken over all (x,y) €R, (h,,h,) €R?, such that
(x+hy;, y+hy) €R, |h,|<dy |h,|<d,, and where Ay,y f(x,y) is defined

from the

SPGCiaI Ca

In this §

L;m g defjnc_ -




hat
aed

Appro:&. Theory & its Appl., 423, Sept, 1988 a7

as above, it is an appropriate quantity to be used when dealing with Bconti=
nuous functions, indeed, in T2, -Teorema 17 it was provet that the real-val=
ued funciior f defined on R is uniformly B-continuous if and only if

lim Omiyed (E; 61962) R 0.
(9:,9,)—=>(0,0)

We recall that the function f which is real-valued and defined on R is unif<
ormly B-continuous if for each ¢ >0 there is a d( e) >0 such that for ev=
BEY 1 G 58 (X' a¥h) € Rywith. Ix—x/ | 8¢e) and dy-w7.,1< 5(e) .we. have
[Acisysf G5¥) |= e, ‘and that B-continuous function on R is also uniformly

~ B-continuous (see [7, Satz 71) .

. For later purposes we note that the mixed modulus @miged (f3¢,8,) is
a monotonically increasing function for each fix.ed b, likewise wopigea (L
d,» +) is monotonically increasing for each fixed 5., Furthermore, for all
non-negative numbers A, A, there holds \ a

Omixed (f3 Aypedsy Ap0d) < (1 +13,D (1 +12,D @migen (£:04500) s ., (1n2)
where JA[ denotes the largest integer smaller than A, _ ;

§ 2 contains an estimate for | Uy, (s x, 7) — (x, v) | where f is an
arbitrary B-continuous function, In §3 we shall deal with the case Where_
the function f is also Bogel-differentiable (B-differentiable), with a bounded
B-derivative Dg { (a definition is given below) , Several applications are gi-
ven in §4,including those for Bernstein operators, for the classical operators
of Hermite-Fejér, and for certain operators investigated by Szabados,

The methods employed in this paper are quite similar to those being fre =
quently employed in the theory of approximation of univariate functions, Hows=
ever, B-continuity is a notion which differs remarkably in many respects
from the usual continuity of bivariate functions (see Bégel. [71 ) so that

special care has to be taken in the proofs,

I Den'ree of Approximation of B- Contmuons Functwns

In this section we give estimates of the Mamedov—-type for the operator
Un,a defined as above, MamedovC®*) was the first to formulate theorems of
the type which are ﬁbwadays known as Shisha-Mond-type theorems or as qu=
antitative Korovkin theorems, Due to the lack of space we cannot discuss these
historical matters any further here, but refer the reader to H, Gonska’s.
thesisC1%), for instance, ‘

As far as the approximation of functions in- B(R) is concerned, predece-

ssors.of the result-in this section are I, Badea’s dissertation<® (especially




ag C. Badea et al: Degree of Approximation of Some Functions

T

Capitolul 111, §3) and his paper 2] where the special case was investigated
in which the operator Lmsa from-above is the product of the parametric exten=
sions of two univariate Bernstein operators, In this case, W0 ds iEhe Bool-
¢ extensionggsee £11 for the relevant definit=

ean sum of the same parameti

ions) .

In order to arrive at a Mamedov-type inequality we first need an estimate

for the difference Axyy f.
Lemma 2,1, For { EBCRY , 1.3 » (s,t) €R, and R there

holds

max A, . £ GSeh) LA B ARD S s 0 |
=Tl Fils—xlfe Ll +11t-71/5:00 @aixed (f; >, 92) @.D
<1 +lS—X\/51] L1 +‘1t"§"~/62] @O mixad (is 2. 5D . @.2)

Proof, The statement of the lemma follows from the definition of Om'xed

(d; +, ¥) and @12 o
Now we are in the state to prove a puantitative Korovkin-type theorem
for B-continuous functions.
Theorem 2,2, Let { € BC(R) and Unsm
Then for every 5,> 0, 5,> 0 there holds:

\ (f_Umsn D) (X,y) l
=[1 "‘61-1 Lusn (s'l._.xl; X;Y) +62-1 Lmon (\*"’Y\i X,Y)

f be defined as in Theorem A,

+ (3,8,)7! Ly (e—-x|o|* -7l %,7) 1 Omixea (£301,02). 2.3
Proof, j
| (i=Unm D &7 | = | Lmsn Qg £ C° L) LR
s e A S TR, BUE IR x,¥) »
i 2L A G 3
=maxXx {Lmon N, F %) s Xo¥) »

Lman (—A'x,}'{ ('9 %) H Xy Y) } . (2l4)
§ estimate (2,2) is continuous and thus

Because of' the positivity of

The function on the right hand side o
Broontintionss. . e8en ML CEL apply Lmsn tO i,

T.ss tHE above lemma yields

| €=Unsn §0 G

el Conre v | (0l £\ % —y|/5.] @mixe (£31,02)3%,7]
=01 R Lmsn (1""3('13 X4 30) +9,7 Lmon (l*—Yli X.7)
+ (3,87 Lmon (1'—5{”*"3"3 x,y) ] Omixed (£35,,92) »

as stated,

Note that it may not be possib
this function might not be B-continuous (cf. Remark 2.4 .

As is well known, it is quite cumbersome to handle the test functions

le to apply Lmsn directly to |Axsy fl sineé

figuring in B

2, wt app 1

to arrive at

by iy

[

Hence ths
other hand

i —.‘uti— {
i(-,%) 3
example 213

value is =€
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figuring in Theorem 2,2 (namely | » =xls e~y andaie=x| J* =g 04
order to obtain an estimate involving only polynomials of coordinate degree
2, we apply the Cauchy=Schwarz inequality to the right hand side of (2,3)
to arrive at

Corollary 2,3, Let f €B(R) atd Unsa £ be defined as in Theorem As
Then for every &, >0, &,>0 there holds

l (E_Um:rn 1)) (x,y) |

<[1+0¢" [Lusa(C-~X)550x,y) 102+ 5,1 CLmsnCCk = y)25x,y)31/2

+ (3:0,7! [Lumsa((e=—x)% (k—y)% X,¥)32] omigeb (£,84,8,) .
Remark 2.4, As announced fOllOIWing the proof of Theorem 2,2, here we

give an example of a B-continuous function f on R such that the function

|Agse £ Co ,%) | is not B=continuous for every s =0, t £0: Let

e h (@) tor s he (0

l ) for x=0, y=0
f(X’y)z{g(y, r s ¥ ’

[ B €0) +g €0, forx=y=o,

L 0, otherwise,

where g and h are suitable univariate continuous functions, We have, for

(x,y) lying in a sufficiently small ball around (X4,¥0) » that

I'f G5y0) +f G0 ~ix,,7) -1 &,7) 1=0, forxj#o0, Yot 05
|f COnyo) &,y =1 (o »Y) —f (X!YO) I:i g (¥qo) = o i(y) l!

for ¥y, =0,

]f ., 0) +i Goy). 1 (Xé,Y) =it ,0) I:Hl (xy) -1 (x2 15
for XD-%OQ

€O E @, 90" —f COLy) <F (x, 0) 18 i €O i 00
—h &) —g O [<|h C0) ~h & |+|g 0) —g ) |,

Hence the continuity of g and h implies that [ is B=continuous, But, on the
other hand, we have for s+ 0, t==0, x=* 0s ¥y#+ 0 that

| |Aeye £ CO,0) [ b 5 f Gy | = [Asaf 0.1 =2k x,0) ]
={lh (0) =h () +g (0) ~g @ |~|h ) —h(s) =12 =gl |1,

In general this does not tend to zero when x and yiitead to 'zZero, ! so
| Agse £ C+ ,%) | is not B-continuous at (0, 0). Since we have Ay,, [Ag,
£Co5%) J =Ausyf (,%) o the function A,y (o ,%) is B-continuous, so this
example also furnishes an instance of a B-continuous function whose absolute

value is not B-continuous,
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3, Degrec of Approximation of B-Differentiable Functions

Tn this section weé consider the case of BégelﬂDifferegtiable (Bidiﬁfé'réntii
able) functions, we say that a function f * R — R is B_differentiable if for
every (x,y) ER there holds :

Ayow B (2,7

i u-x)(¥=Y¥)

(u,v)—=>=(x,¥)
Dg f isvcalled the B-derivative o 1.
We need the following mean value theorem {or B-differentiable functions
(cf, e, g. [ 7, Salz 17¢]) - :
For every function { which is B_differentiable on R ol S | chsty 0T, RI 41
(s,) E€R there hofds
: Bryy i s, =652 G-, Daf (&> G.D

for some suitable £ = E (s,t) between S and x, and 1= 1 (s,t) between t

_Daf(x,y) <

and ¥.
For functions { with a bounded B-derivative Dgi we shall prove Theorem
3.1 below, lts second inequality is given in terms of the total modulus of
continuity @iotar Of the Bogel derivative Dgpf, Here opotm 18 given by
‘ A Q)tatﬂl\(f; 51,62) =sup |f x+h,, y+hy) —f @, s
v}‘nerg the supremum is taken over all (X,¥) ER, ¢h, b)) ER3 such that
(x+hs T ERL) ER, |h (<0 |h,|< 3., Otom (s +, %) is mopotonically
inc:reasing with ;espect to both variables, ie. i< for i=1, 2 implies

b'_‘) %

Oiotay (I3 Y15 Y2) SOtoisl {d; 9.

Another pfoperty is that, for all pon-negative numbers A Ay we howe
Dt koD hatbs) = (1 +max {1M,0 1.0} J @Crom O D4 102) &
Also, the total modulus, ®iotal is related the so—called partial moduli of con-,

tinuity osotm (G d,, 0) and ®iom d; 0, 93) by the incpuality
Dropit (5 D1 D2) =Oiotal (s 515 0) Torm &G0 D
Ste, €, Beshe P Timan(ZE'J for ‘some further information on these measures
of smoothness, : L
Theorem 3.1, Let again Lu;,n and T o be geame faenre A...-liif hés a
bounded B-derivative Dpi, the {ollowinglinequalities hold: &
(i) 1(E=Umpn® x50 |<||Bp { {lo Lumsa Cl===1 = -yl x,y)00 G2
(i) (= Uny D G, |<|Dsf 7| L C=x)( €75 XYL
& Ty 0k el | 3 —Fd s 3Pt B (e =x)%| % — ¥l5%,Y]
. SERE R o Jiun §n 2l o0 (% —¥)% X,y 1 @tom (Dpfs di,02)
for each d,5 8,>0.
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Proof, From the mean value theorem for B-=differentiable functions’ we
know that there exist a & = & (s,t) between s and x as well-as an 11 = 1
(s,t) between t and ¥ such that
Ar,yf:(s,t) =Dl (Eym) (x=9) Cy'=thi,
Hence it follows that
max (Az,yf (ibimit—dagy f G0 T <|Dpflls lx—=s] ly—tl.
Thus
| = Umpa D 2,70 | = |Luyn Chapy f €, %) 5 %553 |
<||Dg flla Lmyn Cle—x|1% —¥ls x,5)5
proving (1) . Furhermore, 4l
Asyyf €5y B =[Dpf G m) —Daf & ¥ 1] (s—x) ¢-y)
+Dgf (x, V) (-3 -9 .

Since the left hand side, as well as the sccond summand of the right hand
side are B-continuous, we know that the first term of the right hand sideis

also B-continuous, Hencc¢ we can write

| Lmsn EAIsyf Cos%®) 3 X:Y] |
= [ Lo T {DsRAEHEHR) 38 CFs +) S Dsf (x,¥) } (o =x) Gk =¥)sx,y]
4 Lassa ((Dp £ 1G5 = =) (% -y) % y1| '
2 [ Fagn ({08 £ (B Censeds (o ,%)) =-Dpf ,7) } (=% W% -7 3x,¥] |
+ | Dpf G,y |limbs L XE550004% 2505 %553}
= v { Ly (E5%.3) L€ wsia) F
o D G, ) e man RO e = IR =YD 13 %173 | - (3.3)

with g €s,t) = {Dsf E,m —Dgf ) } (s—x) -y . Now
max g L5,0) s —g G =ABsE G - Def .70 [Ts ==} e=wl
oot (Defs Is—x1s lt=y12 |s—x| b —ard
= [1 +max {\sﬂxis’[h"’ lt"'.YI&z_i}] IS—XHt"'Y\@tO‘iaI(DBfS 8150,)
e s e bl Oy (s=x)*lt=y|+ 3,7 s—x{t=¥)*]
o owm (Dpfs By 91) ; '
This, together with ¢3,3) , yields the claim of ((ii) .

e

4, Applications

Here we shall give applications of our general theorems _t6 those operatos
Um,p which. are defined on the basis of the w:ell':known uni\f'a.riate Bernstein
and Hermite—-Fejér operators; and on the pasis of some interesting positive
operators considered a few years ago by Szahados, All three operators are

discretely defined so that the resulting operators Um,, are defined for function
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in B(R) with R heing a suitable rectangle, We remark that the observations
of this section are quite analogous to various recent results obtained by one
of the authors in [10], and dealing with the approximation of functions
ClE=t 1 15) and in C**([—1,11% ., Here the latter symd01s benote the
spaces of all continuous functions on [-1,11% and of all functions having
continuous partials up to order (1,1) , respectiv ely,

4,1, Bernstein=Type Operators, The univariate Bernstein operator (sce €

g, [13D)
m
— Erm 7 & — ¢ ym-k 0,1
Buf () = 3 e[ E][E ] < -oms £ RO, xeL0, 1,

reproduces linear functions, Furthermore, it is known that
Bm (is —x|5 x) < (Bu((+ —x)?% x)I¥2= (x (1 -x) /ml¥/z, (4D
Hence Theorem 2.2 yields for any f €B (R) and the operators Um,, defined
via Lmsy =xBmo yB, the inequality A
| (f=Unmynf) &3 |
<[1+8,"! [x(1 —x)/m)V2+3,"% [y(1—y)/all/2
w}.a!‘}_&z"i [ ] —X)/m]1/2 (y(1 —Y)/!ﬂl/z] ®@mizea (I3 61962)
<[1 48,7t (x(1 =2)/md21E1 & 8, % Ly (1l = y)/mIL/2]
mizea (f3 613&2) ®

Choosing &, =1/v/ m , d,4/ 0 we arrive at
i (f""Um,nf) (XSY) l
<[1+ Cx (1-x) 212101+ Cy(1-y)t/z] omixea(f31/v/m,1/v/ 1)

é'z— Cmixed (f; 1/‘/_“1_9 I/N/T) ®

This inequality was proved in a paper by one of the presnent authorst??
However, due to the fact that the Bernstein operators are discretely defined,
we can also proceed as follows is order to obtain a better constant, To this
end we recall inequality (2,1) and observe that, for the special case consi=
dered now, the estimate (2,3) can be replaced by '
| §=Unyu) x,7) |
< (xBm ¢ yBn) Rl '[":H"‘XI/EHEE (141 * -y|/5.0] 3X,¥] ¢
WOm jxed (f; 5” 62)
cBu (1 +1]s ~x/fd,ls =P B. L1 @il yl/8 1) ] -
Om .xed (fs E)19 E)2) ®
Picking again 5,=1/v/m, 8, =1/v'n now gives the upper bound

{1 +DBn E]t~—xi~/m[, <[5 R i 1O % Cl%=-ylval yil
Omixed (f: 1/\/111, 1/’\/-“) e
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The terms involving Bm and B, were evaluated in P, C, Sikkema’s pa-=
persC1737 1% (agy reader interested in the very detalls is referred to E, Bl=
aswich’s thesis [41) . As shown in Sikkema’s second paper it is true that
for all k€ N there holds

Bu (i -zl k[ 23 <] 4305”’522';'*/6 —1 ] =eu- 1%0,089887,

0-<-.Z'€-10

Together with the above inequality this implies

CE=Unyn B3 0,30 | =02 omizet (I3 T/, LAY )N

This special consequence of our general theorem on the approximation of

B-continuous function was also obtained in the dissertation of one of the pre-
sent authors ([3, Teorema 3,1,1]) but as a corollary of a different genera-=
lization, The above estimate is very similar to that of SikkemaC!®J) who pro=

ved that

| (f=Bxf) @ |<c, o (i, 1/NKk) >
where @ (f, o) is the usual univariate modulus of continuity, Moreover, ¢,
is the best constant, Continuing this analogy, we may prove that c¢2 is the
best constant in the above estimate for | €(f=UmynfC (x,¥) |. -Indeed, if
the real-valued functions f, and f, defined on [0, 1] satisfy
sup {I G,—Bnf)) (x) [ B XE [0,1]} = GO (fy; ]—/N/}E)
and
sup £ | «fs~Bako(y) | 2 FE 10,17} =eu® (fo3. LA 0D
(the existence of these two functions is guarannteed by Sikkema’s result),
then for the product function f, given by
fo (x,y) =i, () . (3 » % yeELO,11]s

we have
sup | (i Wsnifigd (xppdin |
(X)) 610,117
= sup L (fl“Bmfl( (X) H sup = l (1_an2) (y) i.-
x€[0,1] yel[0,1]

efee cuaCis D,,0 =a (s by oliy,0,) implies

Sup l (fg“Um,nfn) (ng) {‘__"Cz[ Wmixed (f; 1/'\/—5’ 1/'\/{‘?) e
(x,y)€[0,1]°
This equality, tOget}ier with the general estimate

i (f"Umsnf) (x,y) iéczl Omixzed E{; 1/’\/59 1/'\/—11—) s
shows that c? is the best constant in the above Popoviciu-type estimate,
Consider next the case where { is a function defined on [0,11*, and

possessing a bounded Bogel derivative Dpf everywhers in that interval, In
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this case statement ( i ) of the above Theorem 3,1 implies
| f = Umyn £) x50 |
<||Dp flle Lumsn ¢l « =x| | =75 %,
=||Dgflle. Bm (1 » —x[5s 2> B (I *-7|5 )
<|Dgflle (x(1 —x(/m)1/2 (y(1 - y(/nll/2
=0(1/‘w’;ﬁ') 0C1/~/ 1)

Using inequality (ii) in Theorem 3,1 and observing iy B Qs =X, e
(¥ -7) 5 x,7y) =0, it follows that '
b U D 57 | . i s
< [y T oo o2 B Bl T 5, P2 g, 1> =207 | =P o5y5]
+3,*Lmyn [ « —x| (¥=7)% X, y] JOtotal (D f; dy5 92
<['fx €1 - fm2 [y O =y [all/z
B i C1-x) Amily O =g il
+8,70 [x (1 -%) /m)2y (1= /o] Owom Defs 3y 8 .
For (x, ¥) € (0,1)% we pick ,= [x(1-x)/m)¥/2 &,= [y(A-y) /n)l/3
yielding 0 :
'|. Aot Gy a1l —x) fol/Z2 Ty (1= [ndt/2
. S iwia [Dp s Tx (1 T3y fmals,” Fy Cl —v)° itz ],
Tne above estimate is aiso true if x'or y are cqual to Qor 1, Because Dgf is |
bounded, this estimate implies the same order of approximation as given
above, namely 0 (1/+/m) 0 (1/~/1n) . However, the occurence of
wiotm (Dpfs +,%) enables us to take advantage of smoothpess properties of
Dgf. Secc the following section for a related discussion with respect to
sequences of certain interpolation operators,

4.2 Heremite-Fejer—type Operators, In order to give an application of
somewhat different flavour we consider a special case of the classical I—Iermit:
—Fejer operators Hy as introduced by L. FejerC® in 1916, In the sequel Hnf
will denote the polynomial of degree 2m — 1 interpolating a fupction { €
R<-171) at the roots of the Cebysev polynomial Twm of thie ™ iirsilfloindae wiosiel
Tm (x) =cos (m*arccos x) , and having derivatives equal to zero at these
points, For m=2 and Ixl=s<1 .the fqllowing (in)equalities hold .(sce [91,

[10] for details) s

Hip €oi—m ) == UGy T €X) 5 ISl
Hm (| » —xls x) <4m3le|Tuu@e|l (1 =)L lani+ 0] 5 S (4,3)
Ho (e =x)2%5.x) =m7 ! Tuad), -, .4

Definisg Umsn on the basis of Lmyp=xHm o yH, for my n=2, an application
of Theorem 2,2 and of (4,2) — (4,4) yields
i (f"'Utusnf) (X’y) l



Approx. Theory & its Appl,,4+3, Sept, 1988 105

<[1+8,"% 4m~! |Tw @) | [(1 =2*)/2lnm+ 1]
+5,7 4p [T D T L Q1 =¥)Y2 Ina+ 1)
£5,7* 8,7t 16m™t 1™* [Ta &) Ta () | »
C (1 —-x®)12]pgm+ 130C1 —y9)/2[an + 1)) JOmizea (f5d,,0,)
§or all § CB (R) and alla(ey 3)-E[5a o nl Sl AUt scng of Tms and
if v is none of Ty, we may pick '
§,=m~Y |Tn () [ (L =x")20am+ 11,
o, n"t [ Ta €322 (G - y)1/2 Inn + 11,
to obtain i
| (E=Umynf) &7 |
<IBomizeal 3 M1 | Tie (xdvilafe( p=a2)¥2iaims1 3
-t T o 1L L=y BB e d) ],
Because of the interpolation properties of the Hermite-Fejér operators, this
estimate also holds if x is a zero of Tm, or if y is 2 zero of T,., Thus we
have tne upiform estimate
| (F—Umyn) (x,7) | <25@mizea] fsm™ (Inm+ 1)y 2~ (an+ 1)
Estimates analogous to those for the above Boolean sum of the parametric
extensions of two univariate Bernsiein are also available in the casein which
he function f has a2 bounded B-derivative Dgf, Here, the quantity
25 Omizeal f3 M2 (Iam+1) 5 2™ U+ 1) ]

s hounded from above by

25(|Daflle m~! (Inm+1) n7* (nn+ 1) =0 (m~* [nm)

+0(nt[nn) . (4,5

The same order of approximation can be obtained if we apply Theorem 3,1
(i) to the ahove situation, but with the better constant 16 (rather thnanm
25) . An apalogous improvement can always be achieved if the operator Lmyn
s the product of the parametric extensions of two univariate positive oper=
ators Lm and L., This is due to the fact that the direct approach towards
IDpfll. as used in the proof of Theorem 3,1 (i) avoids certain intermediate
steps which were necessary to get the more general inequality of Theorem

2ol

Now we show that the order of approximation becomes better once we
assume certain regularity properties of Dpf. In this case, inequality (ii) of

Theorem 3,1 first gives

| (f— Unm,yn D) &, |
<D £l |Hu (+'=xs x> | [Ha ¢k —55 9 |
4 Hw (o —x[3%) Ha (% -3 8, L Ha ((+ =x)* Ha C(e-yls7)
48,7 Ham (| » =x]35 X) Ha (% =32 ¥) Jowwm (Dafs 8,5 02)
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<|Dpfll. m~1 n=t
+[4m™! (lnm+ 1) 4n™* Clnn+ 1) +5," m™! 4m™* (fgn+ 1)
+8,7M AmT (Inm+ 1) n™*J @i (Defs id55 8,)1,
Chossing &, = (Iom+ 1)"! and d,= (lan+ 1)"* yields
| (f=Unm,n ) (x,y) {<||Dp f|l. m~* n-2
+[16m™" (/nm+ 1) n~! (lon+ 1) +m=? (lnm+ 1) 40" (lon+ 1)
+4m™! (Inm+ 1) 0™ (lnn+ 1) lotwom [(Dpf; (Inm+ 1)-1,
flnntito=ty :
Assume, for example, that Dpf has bounded first order partials D(1* 2)(Dyf)
and DY) (Dpf) ., Then the relationship between wioa and the partial mod=
uli of continuity mentioned ahove implies
@ [Dpfs  (lam+ 1)7Y,  (lan+ 1)°1) ,
<ID 2 Dpf)lla (nm+ 1)1+ DO (Dyf) |l (fun + 1 g
<2max [P Dof)le 5 BDE LAUDsfIla s} o (a4 )50 (nn+1)-13,
Hence with ¢, =48 max {||D(** ) (Dgf) e 5 JDAS 1% (D5EY: ] s1)o;
i Vst
<||Dpflle m~* n“+c2m"1(lnm+1)n‘1(lnn+1)-E(!nm+1)“+(lnn+1)“‘3
SEBgflls) m7 ATt ibc,s [mTinsd (nn+1) +m™! (Inm+1)"1) ,
Letting m=n for the sake of simplicity, the latter expression is of order

0 La™* Innd = 0 [(a7'Jond3] s m =00, and thus gives a better degree of app=
roximation than that implied by (4.5), or by statemept (i) of Therom 3,1,

4,8 A Jackson-type Theorem for B-Continuous Functions, § 4,1 and 4,2
implicitly contain short proofs of the Weierstrass approximation theorem for
B-continuous functions and pseudopolynmials, ie,, of the fact that every
B-continuous function on [0,1]% can be uniformly approximated by a sequenc®
of functions of the type

m

n
Pm’n (X:y) T E ay (Y) Xk+k2 bk (X) }’k, (4.6)
=

where ay and by are arbitrary univariate fupctions an [0,11. 84,1, for
example, contains the quantitatve assertion that

Bmyp Is¢y omizea (f5 1 /0/ms 1./070) .7

where ‘B, f=inf If = pusnlle » the infimum being taken over all functions of
the type (4,6) , and ¢; denoting a positive constant independent of f ,m, apd
1. Por the case of continiious functions and coptinuyous coefficient functions
in (4.6) it is known (cf, [12]) that the order of approximation in (4,7) may
be improved, More exac’tly, there holds the Jackson-type estimate

" Ewmyp f<c, omigea (f; m=?, n) S (4,8)
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This ineguality is optimal is the sense that the approximation order cannot
be improved, Similarly asin §4,1, this can be verified using functions of the
product type and the corresponding univariate results, Theorem 2.2 enables
us o show that (4,8) also holds for B-continuous functions,

_ a 181 J, Szahadog constructed certaip positive linear apd discretely de=
fined operators 1., : NC—1/4,1/4 =11, which give the Jackson order of a,ppmxi"T

= L. dle=c o s a1y for £ eC= 1./4, 1./41,
Substitating the function fe (t) =|t-x| into this estimate we have
s €] @ ~x|; x) <| L. fx=fxl|s <c5/n.
Therefore, according to Theorem 2.2y and with oy =mr; d,=n"', we have
for the corresponding operators Unw,, that
| E=Unn D) 3 |< 1 +¢5)* Omixea (f; .m~!, p-1)
§OF every function f € ([-1/4, 144121 Sinee Un,, yields approximants
of the form (4,6) s this meaps that the estimate (4,8) is valid for all such
functions, Obviously ap adequate transformation also gives(4,8) for functions
f €B (R) , where R is ap arbitrary rectangle,

For the operators of J, Szahados we do not nave a ysefyl representation
(estimate) for [, (s ~x; x) which would allow us to give meaningful appli=

cations of the results of § 3 for B-differegtiahle functions as well,
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