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Introduction

Electrospinning offers the possibility to create long nanofib-
ers with diameters ranging from some 10 to some 100 nm 
from diverse materials.1 The large surface-to-volume ratio 
of such nanofiber mats suggests using them in diverse areas 
where a large contact area with the environment is neces-
sary,2 such as filter materials,3,4 wound dressings,5,6 in tis-
sue engineering or for other cell growth applications.7,8

While electrospinning necessitates a polymer solution 
or melt and thus typically creates polymeric fibers,9,10 it 
can also be used to prepare blends of polymers and other 
materials, for example, by embedding metallic11 or semi-
conducting nanoparticles,12 or to produce fibers from a 
chemical solution which allows for complete mixing of 
polymeric and other components and thus for calcinating 

the polymeric part after electrospinning, in this way retain-
ing pure ceramic or other non-polymeric nanofibers.13 By 
such techniques, the possible applications can widely be 
extended, as compared to pure polymer nanofiber mats.

Especially zinc oxide (ZnO) is of high interest as a gas 
sensor material,14 for microwave absorption,15 as superca-
pacitor electrode,16 for photocatalytic degradation17 or as an 
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electron injection support material in light-emitting electro-
chemical cells.18 Here, we give an overview of the most 
recent developments in electrospinning pure and blended 
ZnO nanofibers and their possible applications.

Blended ZnO nanofibers

To prepare blended ZnO/polymer nanofibers, ZnO nano-
particles or similar small shapes of ZnO are often inserted 
into the polymeric spinning solution which is used as a 
spinning agent and afterwards as a matrix, stabilizing the 
semiconductor particles. As an example, ZnO nanorods 
were prepared by a sol-gel process from sodium dodecyl 
sulfate and sodium hydroxide (NaOH) and electrospun 
with a polyacrylonitrile (PAN) solution using needle-elec-
trospinning. The resulting hybrid nanofibers had a signifi-
cantly increased diameter with parallel oriented ZnO 
nanorods, as supported by transmission electron micros-
copy (TEM). These fibers revealed high photocatalytic 
performance in visible light.19

To obtain nanofiber mats with self-cleaning properties, 
the photocatalytic activity of ZnO was used by embedding 
ZnO nanoparticles at different concentrations into the co-
polyester poly(1,4-cyclohexanedimethylene isosorbide 
terephthalate). Using TEM images, the ZnO nanoparticles 
were found to be uniformly dispersed in the nanofibers, 
resulting in a high self-cleaning efficiency with 9% ZnO 
nanoparticles.20

Chen et al.21 prepared PAN-ZnO/Ag composite fibers 
with diverse ZnO morphologies by single-capillary elec-
trospinning, followed by hydrothermal ZnO synthesis and 
Ag reduction, and found different photocatalytic activity 
and ultraviolet (UV)-shielding efficiency, depending on 
the varying morphologies.

With electrospun polyaniline/polyethylene oxide (PAni/
PEO) and PAni/ZnO/PEO nanofibers, Patil et al.22 investi-
gated the sensing properties for liquefied petroleum gas 
(LPG) and found advantages for the latter in comparison to 
pure ZnO or polyaniline.

Trabelsi et al.23 showed that PAN/ZnO nanofibers mats, 
electrospun with a needle-based system, stayed much 
more elastic after carbonization than pure PAN nanofiber 
mats which may be useful in future medical or biotechno-
logical applications.

Calcinated ZnO nanofibers

Preparation of pure ZnO nanofibers by calcination of the 
electrospun nanofiber mat and in this way evaporating the 
polymer component is usually performed by electrospinning 
a Zn precursor in combination with a polymer solution.

To create pure ZnO nanofibers, Shingange et  al. sug-
gested electrospinning a solution of zinc nitrate hexahydrate 
(Zn(NO3)2·6H2O) with polyvinylpyrrolidone (PVP) as the 
spinning agent. After electrospinning, the fibers were taken 

off the substrate and annealed at temperatures between 
500°C and 900°C in air to gain pure ZnO nanofibers.24

Matysiak and Tanski used PVP/zinc nitrate in dimethyl-
formamide and ethanol instead to prepare nanofibers 
which were calcinated afterwards at different temperatures 
to remove the polymer. It was shown that not only the mor-
phology, but also the other physical properties, such as the 
complex refractive index and the complex dielectric per-
mittivity, could be tailored, making this material useful for 
opto-electronic or photovoltaic applications.13

By electrospinning PEO/Zn(CH3COO)2·2H2O, fol-
lowed by a first annealing step at varying temperatures, 
then hydrothermally growing ZnO micro- and nano-arrays 
in a solution containing Zn(NO3)2·6H2O, and finally a 
post-annealing-process, Xia et  al.25 optimized the point 
defects in the ZnO micro/nano array. In this way, they 
achieved increased response times and recovery times of 
ZnO photodetectors.

Huang and Or produced Co-doped ZnO nanofibers by 
electrospinning zinc acetate dehydrate and cobalt acetate 
anhydrous with PVP from dimethylformamide and ethanol 
as the solvent. After calcination of the blended fibers, 
Co-doped ZnO nanofibers were gained which showed fer-
romagnetic properties and high dielectric and magnetic 
loss, combined with average microwave absorption.26

ZnO on nanofiber substrates

Combining the electrospinning technology with the mate-
rial ZnO can not only be performed in the above described 
ways. Samuel et al. prepared freestanding supercapacitor 
electrodes from PAN nanofiber mats which were deco-
rated by ZnO doped with manganese, followed by carboni-
zation. In this way, a carbon nanofiber mat creating a fast 
electron-transport path could be combined with the active 
manganese-doped ZnO sites, resulting in a specific capaci-
tance of ~ 500 F/g which stayed nearly fully stable for 
10,000 cycles.27

Piezoelectric electrospun poly(3-hydroxybutyrate) 
(PHB) nanofiber mats were used as substrates for hydro-
thermal deposition of ZnO. In this way, a mixture of nano-
particles and nanorods were formed, while ZnO grew 
preferentially in the hexagonal wurtzite structure. The 
ZnO coating increased the piezoelectric charge coefficient 
by more than a factor of 4, as compared to pristine PHB 
nanofiber mats, and also the surface wettability.28

Electrospun PAN nanofiber mats were decorated with 
ZnO/Ag heterostructure nanoparticles using reflux, blend-
ing and hydrothermal methods, in all cases uniformly dis-
persing the nanoparticles on the nanofiber surfaces. All 
three decoration methods resulted in good antibacterial 
properties against Escherichia coli (gram-negative) and 
Micrococcus luteus (gram-positive), suggesting this fast 
and inexpensive path to developing antibacterial nanofiber 
membranes for protective textiles and filtration.29
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Zhu et al.30 used a hydrothermal process to coat electro-
spun and calcinated SnO2 nanofibers with ZnO nanoparti-
cles which were transferred into ZnO nanorods or ZnO 
nanosheets, respectively, using a combination of thermal 
and chemical treatment which defined the ZnO shape 
(Figure 1).

Applications of ZnO nanofibers

After this short overview on recent possibilities to prepare 
ZnO nanofibers or coatings on nanofiber mats, here we 
give an insight into some of the numerous applications of 
ZnO nanofibers.

For the use as a highly efficient photo-detector, ZnO 
nanowires on highly aligned and on randomly oriented 
poly(vinylidene fluoride-co-trifluoroethylene) nanofiber 
mats were used. Kang et  al.2 found that photo-induced 
electrons moved approx. 4 times more effectively in the 
aligned electrospun mats, as compared to the randomly 
distributed nanofibers, and could thus increase the photo-
sensitivity of the ZnO nanowire array by controlling fiber 
orientation and duration of the electrospinning process.

ZnO is also able to detect several gasses. Similar to 
other metal-oxide semiconductors, the sensing principle 
can be explained by trapping electrons at adsorbed mole-
cules, followed by band bending in the semiconductor due 
to these charged molecules which results in a modification 
of the conductivity.31 One problem of these sensors thus is 
the sensitivity to a specific molecule which is to be detected.

One of these molecules under investigation is hydrogen 
sulfide (H2S), a hazardous substance even at low concentra-
tions. Especially when doped with La, electrospun ZnO 

nanofibers were found to detect H2S highly selectively and 
show low response times and recovery times. This effect 
could further be increased by tailoring the annealing tem-
perature which defined whether the La was incorporated 
into the ZnO lattice or co-existed with the latter, and by opti-
mizing the operating temperature.24

Hydrogen peroxide (H2O2), on the other hand, could be 
detected by electrospun ZnO/CuO nanofiber mats on a car-
bon paste electrode. These electrodes were highly sensi-
tive and selective toward H2O2 and could thus be used as 
H2O2 biosensors.32

To detect H2, Kim et  al. irradiated electrospun ZnO 
nanofibers with a high-energy electron beam of different 
doses. They showed that the highest dose significantly 
increased the selectivity toward H2 as compared to other 
gases, such as carbon monoxide (CO), C2H5OH, C6H6, and 
C7H8. In this way, the sensing performance of the ZnO 
nanofibers could be improved.14

Doping electrospun ZnO nanofibers with Pd, followed 
by electron irradiation, also increased the response to 
hydrogen, which was attributed to metallization of ZnO, 
structural defects, the catalytic activity of Pd and the for-
mation of ZnO-Pd heterojunctions.33

Modification of electrospun ZnO nanofibers with pra-
seodymium (Pr) resulted in a porous morphology and 
reduced ZnO crystallite sizes. This led to a doubled photo-
luminescence-based O2 sensing response at room tempera-
ture, making this material promising for utilization in 
optical gas sensing.34

Besides sensing, ZnO can also be used for photocata-
lytic degradation. La-doped ZnO was grown on nanofiber 
mats and used for photocatalytic degradation of organo-
phosphorus pesticides which are often used in agriculture 
to prevent crop from insects and rodents, but of course also 
harms animals and humans who are exposed to this toxin. 
Degradation of methyl parathion, one of these organo-
phosphorus pesticides, by the optimized La-doped ZnO on 
nanofiber mats was completed after approx. 150 min, 
showing 100% efficiency.35

Electrospun La-doped ZnO nanofibers were also suc-
cessfully used for degradation of Congo-Red dye as a 
model molecule. In this study, Pascariu et al.36 could show 
that recovering the catalyst, followed by thermal activa-
tion, made it applicable for dye photo-degradation again.

Rhodamine B was photodegraded from an aqueous 
solution by ZnO nanofibers, produced by electrospinning 
and subsequent calcination to remove the organic parts.37 
Adding fly ash from thermal power plants to ZnO during 
electrospinning resulted in increased adsorption and pho-
tocatalytic removal of methylene blue from water.38

Similarly, PAN nanofiber mats doped with ZnO and 
partly additional TiO2 were used for adsorption of Cr(VI) 
ions from water. While doping with ZnO increased the equi-
librium adsorption capacity of the PAN nanofiber mat, addi-
tional TiO2 further improved this value. Correspondingly, 

Figure 1.  Production of ZnO nanorods and nanosheets on 
nanofibers according to Zhu et al.30
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PAN/ZnO/TiO2 nanofiber mats could most rapidly adsorb 
the Cr(VI) ions from water.39

ZnO was also suggested as part of a mixed matrix mem-
brane, consisting from a PVA nanofiber mat on a function-
alized cellulose-acetate substrate. The nanofiber mat was 
modified by embedding ZnO nanoparticles and sodium 
alginate. This composite could be used for reverse osmosis 
to reject 97% of the salt in sea water and was thus promis-
ing for seawater desalination.40

Air filtration of ultrafine particles (300 nm dimen-
sion) was nearly 100% for nanofiber mats from PVA and 
konjac glucomannan, a polysaccharide extracted from 
Amorphophallus konjac with high water binding and 
gelation properties,41 which were loaded with ZnO nano-
particles and thermally cross-linked. In addition to the 
good filtration efficiency—higher than that of commer-
cial High Efficiency Particulate Air (HEPA) filters—the 
high photocatalytic activity allowed for nearly full 
decolorizing of methyl orange during 2 h of solar irradia-
tion. This material was thus suggested for multifunc-
tional usage.42

In medical applications, electrospun gelatin/ZnO 
nanofibers were prepared for wound dressing. The ZnO 
particles, uniformly dispersed on the surface of the gelatin 
fibers, were not cytotoxic, but the whole nanofiber mat 
showed high antibacterial activity against Staphylococcus 
aureus and Escherichia coli.43

Another topic in which ZnO is of interest is microwave 
absorption. Zhen et al. prepared porous carbon nanofibers 
by electrospinning PAN with ZnCl2, followed by anneal-
ing. During temperature treatment, ZnCl2 was gasified, 
leading to pores and formation of ZnO and Zn complexes. 
The high microwave absorption properties were attributed 
to the porous structures and the ZnO or Zn complexes 
increasing the dielectric loss.15

Doping ZnO nanofibers with Co results in a bead-like 
structure with ferromagnetic properties and a high electro-
magnetic loss performance due to interfacial polarization 
and dipole polarization, while the magnetic loss can be 
attributed to magnetic hysteresis loss and residual loss.44

In supercapacitors, carbon nanofiber mats decorated 
with ZnO can be used as electrodes.27 On the other hand, 
electrospinning carbon precursors such as PAN, pitch and 
lignin with zinc acetate leads to a one-step preparation of 
nanofiber mats. These can afterwards be temperature-
treated to create carbon nanofibers with a large specific 
capacitance and high energy density as well as good cycling 
performance.17

Piezoelectric nano-generators were prepared from 
poly(vinylidene fluoride) (PVDF) with ZnO nanoparti-
cles and nanorods as fillers. The piezoelectric properties 
of ZnO improved the piezoelectric nano-generators, as 
compared to pure PVDF, and offer a possible way to 
flexible self-powered electronic devices.45 It could be 
shown that the solvents—here dimethylformamide and 

tetrahydrofuran—and their ratio influenced the output 
currents and voltages as well as the polymer and ZnO 
concentrations, the electrospinning intervals and the 
injection rates.46

Similarly, piezoelectric acoustoelectric nano-generators 
were produced by PVDF/ZnO composite fibers which 
were found to produce higher voltage under low frequency 
sound and high sound pressure level and can thus be used 
for noise energy harvesting.47

PEO can be applied as the base for a solid-state electro-
lyte in lithium-ion batteries. By adding TiO2 or ZnO as 
fillers in the electrospinning process, the ion conductivity 
could be increased as compared to the original unfilled 
electrolyte and also in comparison with film electrolytes.48 
Co-doped ZnO nanofibers were also used as photo-anodes 
for dye-sensitized solar cells, showing a high photo-con-
version efficiency, photocurrent density and power con-
version efficiency.49

It should be mentioned that polymer/ZnO nanofiber mats 
can also be used as a coating for increased mechanical and 
chemical resistance. Polystyrene/ZnO nanofiber mats, for 
example, were electrospun on an aluminum alloy substrate 
and reduced the corrosion current of the aluminum substrate 
by two orders of magnitude, at the same time producing a 
superhydrophobic surface.50 Similarly, PVC/ZnO nanofib-
ers as a coating on an aluminum alloy were found to improve 
the corrosion resistance of the aluminum alloy.51

Conclusion

This short review of the most recent developments and 
research results dealing with ZnO nanofibers or nanofiber 
coatings clearly shows the broad area of application for such 
nanostructured materials. While different methods can be 
applied to create nanofibers from pure ZnO, ZnO blended 
with a polymer or a ZnO coating around electrospun poly-
mer nanofibers, the possible fields of application range from 
gas sensors to photocatalytic degradation and filter materi-
als, from electrical applications such as solid state electro-
lytes or battery electrodes to anti-corrosive coatings. We 
hope that this brief overview will stimulate the readers to 
use ZnO in their own fields of research and develop further 
the here described methods of producing ZnO nanofibers.
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