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Hochtaunus Kliniken

Department for General and Visceral Surgery
Bad Homburg, Germany

Abstract—The development of detailed fascial tissue models
is an essential aspect in research of medical suture failure.
These models can be created on the basis of tensile test data
and require accurate deformation measurement. Typically, this
is done by applying colored dots or a speckle pattern to simplify
the tracking with digital image correlation (DIC). This method
leads to time-consuming preparation of the test objects and
a computationally intensive analysis. This paper presents an
alternative approach to automated strain analysis, using open-
source tracking algorithms to measure the deformation of natural
textures on fascial tissue. As part of the evaluation, a strain-
dependent error in the displacement of individual tracking
points was identified using artificial videos of idealized stretched
fascial textures. By automating and simplifying the deformation
measurement, the described approach enables researchers to
easily investigate various different fascial tissue samples in order
to generate more characteristic data and improve existing models.

Index Terms—Tensile test, fascial tissue analysis, texture track-
ing, OpenCV

I. INTRODUCTION

Medical suture failure is a common complication follow-
ing surgical closure of the abdominal wall and the surgical
complication that most frequently leads to re-operation [1].
Concepts for avoiding these complications have long been part
of research in biomechanics. A possible approach is to model
the elastic behavior of fascial tissue in order to understand
its mechanical properties and enable finite element method
(FEM) simulations. This approach has been the subject of
numerous medical and biomechanical publications [2] [3] [4].
These models require measurements of local stress and strain
conditions as characteristic material properties, which are
typically determined by tensile tests with a video extensometer.
There are various approaches in the literature for analyzing
video material of an inhomogeneous test specimen during a
tensile test. For example, Cooney et al. uses a static number
of reference points applied to the test specimens [3] [4]
and Elliott et al. uses colored reference lines on the test
specimens that are analyzed by Harris Corner Detection to
determine the displacement [5]. Another common approach
used by Jacquemoud et al. and Chen et al. is to apply a
random speckle pattern to the test specimens and then use
DIC to analyze the displacement [6] [7]. Santamaria et al.
extended this method by using two cameras in a stereo DIC,
which was also used by Kroese et al. and Estermann et al.

[2] [8] [9]. These methods all have in common that the test
specimens must be colored prior to the tensile test. Although
previous studies have shown that a thin layer of color has
a negligible influence on the mechanical properties [10], it
is desirable to simplify the preparation process of the test
specimens. This aspect becomes even more important for
analyzing a large number of samples to improve the statistical
significance of the fascia model. Cheng et al. developed a DIC
modification for natural textures that does not require speckle
patterns, but has the disadvantage of increased computational
demands [11]. This paper presents and evaluates an alternative
approach to automated strain analysis of fascial tissue, using
natural textures and common open-source tracking algorithms.
Therefore different tracking algorithms provided by the open-
source computer vision library OpenCV are introduced and
evaluated regarding their tracking performance.

II. EXPERIMENTAL SETUP AND PREPROCESSING

The experimental setup is designed to perform uniaxial tests
using the universal testing machine ’Hegewald & Peschke
inspekt table 10 kN’. For this purpose, the used porcine test
specimens are fixed with two clamping jaws at the lower and
upper mounting points of the machine, as shown in Fig. 1.
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Fig. 1: Experimental setup with tensile testing machine, cam-
era position, light sources and a test specimen



Light sources are used to ensure constant ambient lighting
for video analysis, and reference points with known diameters
are used to scale the measured data from pixels to millimeters.
The simple smartphone camera of a Samsung SM-A528B with
a video resolution of 2160 x 3840 pixels and a frame rate
of 30 frames per second is used to record the videos. The
automated deformation video analysis requires a preprocessing
procedure for every frame. The part of the image showing
the test specimen gets isolated by applying a color mask and
then performing binary encoding. Assuming an approximately
quadrangular object, the corner points can be determined by
applying the Douglas-Peuker algorithm on the contours of the
binary image [12]. The algorithm approximates the contour
with less vertexes of a given precision that can be adjusted by
a parameter γ. With a suitable value for γ, the corner points of
the largest detected quadrangular object achieve an acceptable
approximation to the corner points of the test specimen. For
the first frame, the initial texture regions for tracking (tracking
rectangles) can then be placed equidistant between the lower
and the upper edge of the object. Depending on the particular
application, a different arrangement of tracking rectangles can
also be selected. The preprocessing steps are shown in Fig. 2.

Fig. 2: Preprocessing steps: Initial frame, color mask and
binary image, corner detection, and initial tracking rectangles

The idea of using tracking algorithms is to continuously up-
date rectangular regions by successively monitoring the fascial
texture within each region for every video frame. By treating
each fascial texture as a trackable object, standard object
tracking algorithms can determine the spatial displacement of
these regions.

III. VALIDATION OF COMMON TRACKING ALGORITHMS
WITH SYNTHETIC DATA

Typical algorithms for this use case are provided by the
OpenCV tracking API, which enables easy application and
comparison of different algorithms [13]. This paper validates
seven tracking algorithms provided by the OpenCV tracking
API in version 4.5.0. These are discriminative correlation
filter with channel and spatial reliability (CSRT) [14], generic
object tracking using regression network (GOTURN) [15],
kernelized correlation filter (KCF) [16], median flow algorithm

(MF) [17], multiple instance learning (MIL) [18], minimum
output sum of squared error (MOSSE) [19], and tracking,
learning, detection (TLD) [20]. For a general benchmark of
these algorithms, reference is made to Dardagan et al. [21].
The following analysis applies the algorithms to measure
the displacement of predefined tracking rectangles on natural
fascial tissue textures for multiple test specimens.

A validation of the applicability of these tracking algorithms
on fascial tissue textures in a real tensile test is challeng-
ing. As the displacement of the tissue is inhomogeneous,
no ground truth can be defined. For this reason, synthetic
data are generated from a simulation of the tensile test. The
experimental setup is modeled using the graphics software
’Blender’ [22] with light sources and the camera position
according to the original experiment. In the simulation, images
of real test specimens are displaced and elongated linearly
and homogeneously in order to generate synthetic data of
the tensile test. Due to the known displacement, the ground
truth can be determined and compared to the results of the
algorithms. The horizontal and vertical deformation velocity
is chosen similarly to the original experiment. The simulation
setup can be seen in Fig. 3.
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Fig. 3: Simulation setup for generating synthetic data

The validation aims to identify suitable algorithms for
texture tracking on fascial tissue. Therefore, one tracking
rectangle is defined in the center of the simulated test specimen
for each algorithm. The test specimen is elongated to double
the initial length, and the tracking accuracy can be determined
by comparing the results of the algorithms with the calculated
ground truth. Within the scope of the validation, seven dif-
ferent images of fascial tissue patterns are used. It can be
observed that the TLD algorithm is subject to large jumps of
the tracked area and the GOTURN algorithm fails completely
for various test specimens. These algorithms are consequently
unsuitable for tracking fascial tissue textures. Fig. 4 shows an
exemplary test series for comparing the performance of the
algorithms. It can be seen that the CSRT algorithm achieves
good qualitative performance in this test while the tracking
with KCF, MedianFlow, MIL and MOSSE is comparatively
inaccurate. A high accuracy of the CSRT algorithm at lower



speed compared to other tracking methods was also confirmed
in a benchmark with other video data by Dardagan et al. [21].
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Fig. 4: Comparison of Ground truth (green) and the tracking
algorithms CSRT (blue), KCF (red), MF (magenta), MIL
(yellow), MOSSE (cyan), TLD (black) with synthetic data

IV. VERIFICATION OF CSRT TRACKING ALGORITHM

Based on these results, the accuracy of the CSRT tracking
algorithm for fascial texture is examined in detail. Two differ-
ent studies are carried out: In a first test series, the image of a
fascial texture is linearly displaced without any stretching. In
a second test series, the image is homogeneously elongated
similar to the validation and the real tensile test. As part
of the investigation, 49 displacement tests and 56 elongation
tests were carried out. The maximum considered strain is
0.7, because higher strains usually lead to tearing of real test
samples. The height of the test specimen in the simulation
is about 300 pixels and thus chosen similar to the height
in the real experiment. In the case of linear translation, the
amount of displacement can be used directly as ground truth
for all tracking rectangles. For the homogeneously elongated
fascial texture, the ground truth can be calculated from the
initial placement and the displacement of the upper edge. The
calculated error is considered in vertical direction, as this is the

significant variable in the context of a real tensile test. In Fig.
5 the position error of the tracking rectangles is shown with
a color scheme according to the distribution of the deviation
that can be found in Fig. 6. A trace is displayed in orange if
at least one sample is outside the 2σ interval, or in red if at
least one sample is outside the 3σ interval.
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Fig. 5: Position error of the displacement tests
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Fig. 6: Histogram of the displacement test

Fig. 6 shows that the position error of the displacement
test is approximately normally distributed. Also, a proportional
relationship between the position error and the displacement
in pixels can be inferred from Fig. 5. For the second test using
homogeneously elongated test specimens, the position error of
the tracking rectangles is shown as a function of the strain in
Fig. 7. The corresponding distribution can be found in Fig.
8. As in the first experiment, the color scheme is determined
according to the σ-intervals. Also for the elongation test, an
approximately normally distributed error can be found in Fig.
8 and a proportional relationship between position error and
strain can be inferred from Fig. 7.
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Fig. 7: Position error of the elongation test
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Fig. 8: Histogram of the elongation test

A comparison of Fig. 5 and Fig. 7 reveals that the measured
position errors of the elongation tests are generally higher
compared to the displacement tests. This is because the texture
within the tracking rectangle changes during the elongation
tests, making precise tracking more difficult. The position
error of the displacement tests is linearly dependent on the
displacement, which can be seen in Fig. 5. The calculated
mean position error is x̄d = −0.12 pixels and the standard
deviation is σd = 2.26 pixels. The position error of the
elongation tests is linearly dependent on the strain itself,
which can be seen in Fig. 7. This results from the idealized,
homogeneous strain ϵ, which has the same effect on every
defined tracking rectangle. Assuming that texture deformation
within the tracking rectangles causes the position error, the
same position error can be expected for all tracking rectangles.
The calculated mean position error is x̄e = −1.67 pixels and
the standard deviation is σe = 3.91 pixels.

Looking at the data raises the question of whether there is a

reason for the higher error values of some tracking rectangles.
After a detailed inspection of the red synthetic data in Fig.
5 and Fig. 7, a relatively low contrast of the fascial texture
inside the initial tracking rectangle can be found. The standard
deviation of the gray-scaled initial tracking rectangle as a
metric of contrast over the position error in pixels is shown in
Fig. 9. The previously identified outliers with values outside
the 3σ interval are marked as red dots. It is evident that
low contrast indicates a high position error, which makes it
difficult to track the textures. This results in the possibility of
preselecting the initial tracking rectangles based on contrast
values to reduce the error of the tracking method.
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Fig. 9: Dependency between contrast of the image and the
mean position error

V. APPLICATION TO A REAL TENSILE TEST

After verification of the CSRT tracking algorithm and deter-
mination of the error, the tracking method is applied exemplar-
ily to a real tensile test experiment. Therefore, three tracking
rectangles are placed on the test specimens, as described in
section II. During the data analysis two challenges arise in
particular: The distance of two tracking rectangles can only be
determined in discrete pixels, whereas the real object extends
continuously. In addition, the tracking algorithms occasionally
misidentify small single frame jumps of the fascial texture,
leading to measurement outliers. The data quality can be
significantly improved by applying a median filter to remove
outliers and a gaussian filter to smooth the data and remove
the influence of discrete pixel levels. Both filters are first
preloaded with the first available value, which results in a
stronger weighting of the first values. Fig. 10 presents the raw
data and filtered data for a measured distance between two
tracking rectangles from a real tensile test, plotted over the
strain. It can be seen that the chosen filter method works well
on this example.
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Fig. 10: Raw data (blue) and filtered data (red) of a section
length measurement

Based on the described strain-dependent position error, the
resulting error of a measured length L between two tracking
rectangles can be calculated as

∆L

L
(ϵ) = 2 ·m · ϵ

ϵmax
(1)

The factor 2 is used to consider the position error of both the
upper and lower tracking rectangles, and the factor m = 3σe

reflects the 3σ interval, which was determined with the elon-
gation tests. The overall strain ϵ is used as an approximation
for the local strain of each tracking rectangle with ϵmax as the
maximum strain taken into account in the elongation tests. The
resulting error pipes are shown in Fig. 10. Since the position
error of each tracking rectangle is given in pixels, it can be
concluded that a higher video resolution leads to more accurate
measurement results.

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel approach using tracking algorithms
for an automated strain analysis on fascial tissue was pre-
sented. Compared to established methods, the advantages are
rapid preparation and fast automated video analysis. Current
limitations of the proposed method include the need for ap-
proximately rectangular test specimens and the examination of
linear elongation, whereas real test specimens elongate nonlin-
early. The developed preprocessing procedure was introduced
and different open-source algorithms were compared in respect
of their ability to track a predefined texture on a test specimen.
A synthetic video data set was used for this purpose, enabling
the definition of a ground truth for evaluating the tracking
performance. In this experiment, the CSRT algorithm achieved
the best overall results and was consequently evaluated in more
detail by performing displacement and elongation tests with
the synthetic video data. In these experiments, the position
error of the tracked textures was characterized and found to
be proportional to the strain of the test specimens. Based on

these results, the presented approach can be applied to analyze
the data of real tensile tests and characterize the position error.

In future work, more tracking algorithms should be in-
vestigated regarding their performance to track fascial tissue
textures. More recent tracking algorithms based on deep
learning are particularly interesting, as they could outperform
the CSRT algorithm in terms of robustness and speed. As an
extension of the validation process, the CSRT algorithm can
be applied to a synthetic data set with nonlinear elongation and
to a larger set of real test data. In addition, the applicability
for real-time video analysis, the influence of different sizes
and shapes of the tracked textures, and the investigation of
the algorithms computational demands are interesting areas of
research. Finally, the presented approach extends beyond the
analysis of fascial tissue and can be generalized to track the
deformation of other materials with a distinct surface texture.
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