{"date_updated":"2025-11-24T07:36:17Z","article_type":"original","extern":"1","type":"journal_article","author":[{"orcid":"0009-0002-3257-3877","full_name":"Katter, Vincent","id":"239593","last_name":"Katter","first_name":"Vincent","orcid_put_code_url":"https://api.orcid.org/v2.0/0009-0002-3257-3877/work/197573926"},{"orcid":"0000-0002-8362-5369","id":"252434","full_name":"Jaster, Bjarne","first_name":"Bjarne","last_name":"Jaster","orcid_put_code_url":"https://api.orcid.org/v2.0/0000-0002-8362-5369/work/197573927"},{"last_name":"Schöne","first_name":"Marvin","full_name":"Schöne, Marvin","id":"218388"}],"status":"public","volume":2,"publisher":"Hochschule Bielefeld","publication":"Schriftenreihe des Institute for Data Science Solutions","main_file_link":[{"url":"https://journals.hsbi.de/sidas/issue/view/25","open_access":"1"}],"department":[{"_id":"103"}],"year":"2024","_id":"6299","title":"Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme ","abstract":[{"text":"This study investigates the application of Long Short-TermMemory (LSTM) models to approximate complex physical processes. LSTM models, which are characterized by their ability to processlarge data sets and detect hidden patterns, are evaluated for theirprediction capabilities. The research focuses on the advantages ofLSTM models, such as accurate predictions, as well as challengessuch as data dependency and the risk of overfitting. Experiments ona heating system show that LSTM models with optimized inputs andhyperparameters can be effectively used for predictive maintenanceand improving operational efficiency in industrial applications.Bayesian optimization is used for hyperparameter optimization, whichenables an improvement in model accuracy and a reduction inevaluation time. The results of this optimization and the knowledgegained from it offer valuable insights for the use of LSTM models intechnical and industrial areas.","lang":"eng"}],"language":[{"iso":"ger"}],"citation":{"chicago":"Katter, Vincent, Bjarne Jaster, and Marvin Schöne. “Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme .” Schriftenreihe des Institute for Data Science Solutions 2 (2024). https://doi.org/10.60802/SIDAS.2024.2.","short":"V. Katter, B. Jaster, M. Schöne, Schriftenreihe des Institute for Data Science Solutions 2 (2024).","bibtex":"@article{Katter_Jaster_Schöne_2024, title={Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme }, volume={2}, DOI={10.60802/SIDAS.2024.2}, journal={Schriftenreihe des Institute for Data Science Solutions}, publisher={Hochschule Bielefeld}, author={Katter, Vincent and Jaster, Bjarne and Schöne, Marvin}, year={2024} }","ama":"Katter V, Jaster B, Schöne M. Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme . Schriftenreihe des Institute for Data Science Solutions. 2024;2. doi:10.60802/SIDAS.2024.2","apa":"Katter, V., Jaster, B., & Schöne, M. (2024). Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme . Schriftenreihe des Institute for Data Science Solutions, 2. https://doi.org/10.60802/SIDAS.2024.2","alphadin":"Katter, Vincent ; Jaster, Bjarne ; Schöne, Marvin: Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme . In: Schriftenreihe des Institute for Data Science Solutions Bd. 2, Hochschule Bielefeld (2024)","ieee":"V. Katter, B. Jaster, and M. Schöne, “Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme ,” Schriftenreihe des Institute for Data Science Solutions, vol. 2, 2024.","mla":"Katter, Vincent, et al. “Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme .” Schriftenreihe des Institute for Data Science Solutions, vol. 2, Hochschule Bielefeld, 2024, doi:10.60802/SIDAS.2024.2."},"user_id":"263827","publication_status":"published","intvolume":" 2","doi":"10.60802/SIDAS.2024.2","date_created":"2025-11-17T12:29:54Z","oa":"1"}