PUBLIKATIONSSERVER

18 Publikationen

Alle markieren

[18]
2026 | Artikel | FH-PUB-ID: 6485 | OA
N. Migenda, R. Möller, and W. Schenck, “H-NGPCA: Hierarchical clustering of data streams with adaptive number of clusters and adaptive dimensionality,” PLOS One, vol. 21, no. 1, 2026.
HSBI-PUB | DOI | Download (ext.)
 
[17]
2025 | Artikel | FH-PUB-ID: 6244 | OA
M. Niederhaus, N. Migenda, J. Weller, M. Kohlhase, and W. Schenck, “Integrating Graph Retrieval-Augmented Generation into Prescriptive Recommender Systems,” Big Data and Cognitive Computing, vol. 9, no. 10, 2025.
HSBI-PUB | Dateien verfügbar | DOI | Download (ext.)
 
[16]
2025 | Datenpublikation | FH-PUB-ID: 6486
N. Migenda, Clustering in High-Dimensional Data Streams with Adaptive Local Principal Component Analysis. Universität Bielefeld, 2025.
HSBI-PUB | DOI
 
[15]
2024 | Konferenzbeitrag | FH-PUB-ID: 4916
J. Weller, N. Migenda, A. Kühn, and R. Dumitrescu, “Prescriptive Analytics Data Canvas: Strategic Planning For Prescriptive Analytics In Smart Factories,” presented at the 6th Conference on Production Systems and Logistics, Honolulu, Hawaii, 2024.
HSBI-PUB | DOI
 
[14]
2024 | Artikel | FH-PUB-ID: 5497
J. Weller, N. Migenda, S. von Enzberg, M. Kohlhase, W. Schenck, and R. Dumitrescu, “Design decisions for integrating Prescriptive Analytics Use Cases into Smart Factories,” Procedia CIRP, vol. 128, pp. 424–429, 2024.
HSBI-PUB | DOI
 
[13]
2024 | Artikel | FH-PUB-ID: 4050
N. Migenda, R. Möller, and W. Schenck, “Adaptive local Principal Component Analysis improves the clustering of high-dimensional data,” Pattern Recognition, vol. 146, 2024.
HSBI-PUB | DOI
 
[12]
2024 | Artikel | FH-PUB-ID: 4698
N. Migenda, R. Möller, and W. Schenck, “NGPCA: Clustering of high-dimensional and non-stationary data streams,” Software Impacts, vol. 20, 2024.
HSBI-PUB | DOI
 
[11]
2024 | Konferenzbeitrag | FH-PUB-ID: 4699
M. Niederhaus, N. Migenda, J. Weller, W. Schenck, and M. Kohlhase, “Technical Readiness of Prescriptive Analytics Platforms: A Survey,” in 2024 35th Conference of Open Innovations Association (FRUCT), Tampere, Finland, 2024, pp. 509–519.
HSBI-PUB | DOI
 
[10]
2024 | Buchbeitrag | FH-PUB-ID: 4915
J. Weller et al., “Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories,” in Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023, vol. 18, O. Niggemann, J. Beyerer, M. Krantz, and C. Kühnert, Eds. Cham: Springer Nature Switzerland, 2024, pp. 89–100.
HSBI-PUB | DOI
 
[9]
2024 | Artikel | FH-PUB-ID: 4913
J. Weller et al., “Reference Architecture for the Integration of Prescriptive Analytics Use Cases in Smart Factories,” Mathematics, vol. 12, no. 17, 2024.
HSBI-PUB | DOI
 
[8]
2023 | Konferenzbeitrag | FH-PUB-ID: 4700
J. Weller, N. Migenda, A. Wegel, M. Kohlhase, W. Schenck, and R. Dumitrescu, “Conceptual Framework for Prescriptive Analytics Based on Decision Theory in Smart Factories,” in 2023 IEEE International Conference on Advances in Data-Driven Analytics And Intelligent Systems (ADACIS), Marrakesh, Morocco, 2023, pp. 1–7.
HSBI-PUB | DOI
 
[7]
2022 | Konferenzbeitrag | FH-PUB-ID: 2569
C. Hoppe, N. Migenda, D. Pelkmann, D. A. Hötte, and W. Schenck, “Collaborative System for Question Answering in German Case Law Documents,” in Collaborative Networks in Digitalization and Society 5.0, Lisbon, Portugal, 2022, pp. 303–312.
HSBI-PUB | DOI
 
[6]
2021 | Konferenzbeitrag | FH-PUB-ID: 2570
C. Hoppe, D. Pelkmann, N. Migenda, D. A. Hotte, and W. Schenck, “Towards Intelligent Legal Advisors for Document Retrieval and Question-Answering in German Legal Documents,” in 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA, USA, 2021, pp. 29–32.
HSBI-PUB | DOI
 
[5]
2021 | Konferenzbeitrag | FH-PUB-ID: 2571
T. Voigt et al., “Advanced Data Analytics Platform for Manufacturing Companies,” in 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ), Vasteras, Sweden, 2021, pp. 01–08.
HSBI-PUB | DOI
 
[4]
2021 | Konferenzbeitrag | FH-PUB-ID: 2572
L. Steinmann, N. Migenda, T. Voigt, M. Kohlhase, and W. Schenck, “Variational Autoencoder based Novelty Detection for Real-World Time Series,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 1–7.
HSBI-PUB | DOI
 
[3]
2021 | Artikel | FH-PUB-ID: 1203
N. Migenda, R. Möller, and W. Schenck, “Adaptive dimensionality reduction for neural network-based online principal component analysis,” PLOS ONE, vol. 16, no. 3, 2021.
HSBI-PUB | DOI
 
[2]
2020 | Konferenzbeitrag | FH-PUB-ID: 2574
N. Migenda and W. Schenck, “Adaptive Dimensionality Reduction for Local Principal Component Analysis,” in 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 2020, pp. 1579–1586.
HSBI-PUB | DOI
 
[1]
2019 | Buchbeitrag | FH-PUB-ID: 1208
N. Migenda, R. Möller, and W. Schenck, “Adaptive Dimensionality Adjustment for Online ‘Principal Component Analysis,’” in Intelligent Data Engineering and Automated Learning – IDEAL 2019. 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I, H. Yin, D. Camacho, P. Tino, A. J. Tallón-Ballesteros, R. Menezes, and R. Allmendinger, Eds. Cham: Springer International Publishing, 2019, pp. 76–84.
HSBI-PUB | DOI
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: IEEE

Export / Einbettung

18 Publikationen

Alle markieren

[18]
2026 | Artikel | FH-PUB-ID: 6485 | OA
N. Migenda, R. Möller, and W. Schenck, “H-NGPCA: Hierarchical clustering of data streams with adaptive number of clusters and adaptive dimensionality,” PLOS One, vol. 21, no. 1, 2026.
HSBI-PUB | DOI | Download (ext.)
 
[17]
2025 | Artikel | FH-PUB-ID: 6244 | OA
M. Niederhaus, N. Migenda, J. Weller, M. Kohlhase, and W. Schenck, “Integrating Graph Retrieval-Augmented Generation into Prescriptive Recommender Systems,” Big Data and Cognitive Computing, vol. 9, no. 10, 2025.
HSBI-PUB | Dateien verfügbar | DOI | Download (ext.)
 
[16]
2025 | Datenpublikation | FH-PUB-ID: 6486
N. Migenda, Clustering in High-Dimensional Data Streams with Adaptive Local Principal Component Analysis. Universität Bielefeld, 2025.
HSBI-PUB | DOI
 
[15]
2024 | Konferenzbeitrag | FH-PUB-ID: 4916
J. Weller, N. Migenda, A. Kühn, and R. Dumitrescu, “Prescriptive Analytics Data Canvas: Strategic Planning For Prescriptive Analytics In Smart Factories,” presented at the 6th Conference on Production Systems and Logistics, Honolulu, Hawaii, 2024.
HSBI-PUB | DOI
 
[14]
2024 | Artikel | FH-PUB-ID: 5497
J. Weller, N. Migenda, S. von Enzberg, M. Kohlhase, W. Schenck, and R. Dumitrescu, “Design decisions for integrating Prescriptive Analytics Use Cases into Smart Factories,” Procedia CIRP, vol. 128, pp. 424–429, 2024.
HSBI-PUB | DOI
 
[13]
2024 | Artikel | FH-PUB-ID: 4050
N. Migenda, R. Möller, and W. Schenck, “Adaptive local Principal Component Analysis improves the clustering of high-dimensional data,” Pattern Recognition, vol. 146, 2024.
HSBI-PUB | DOI
 
[12]
2024 | Artikel | FH-PUB-ID: 4698
N. Migenda, R. Möller, and W. Schenck, “NGPCA: Clustering of high-dimensional and non-stationary data streams,” Software Impacts, vol. 20, 2024.
HSBI-PUB | DOI
 
[11]
2024 | Konferenzbeitrag | FH-PUB-ID: 4699
M. Niederhaus, N. Migenda, J. Weller, W. Schenck, and M. Kohlhase, “Technical Readiness of Prescriptive Analytics Platforms: A Survey,” in 2024 35th Conference of Open Innovations Association (FRUCT), Tampere, Finland, 2024, pp. 509–519.
HSBI-PUB | DOI
 
[10]
2024 | Buchbeitrag | FH-PUB-ID: 4915
J. Weller et al., “Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories,” in Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023, vol. 18, O. Niggemann, J. Beyerer, M. Krantz, and C. Kühnert, Eds. Cham: Springer Nature Switzerland, 2024, pp. 89–100.
HSBI-PUB | DOI
 
[9]
2024 | Artikel | FH-PUB-ID: 4913
J. Weller et al., “Reference Architecture for the Integration of Prescriptive Analytics Use Cases in Smart Factories,” Mathematics, vol. 12, no. 17, 2024.
HSBI-PUB | DOI
 
[8]
2023 | Konferenzbeitrag | FH-PUB-ID: 4700
J. Weller, N. Migenda, A. Wegel, M. Kohlhase, W. Schenck, and R. Dumitrescu, “Conceptual Framework for Prescriptive Analytics Based on Decision Theory in Smart Factories,” in 2023 IEEE International Conference on Advances in Data-Driven Analytics And Intelligent Systems (ADACIS), Marrakesh, Morocco, 2023, pp. 1–7.
HSBI-PUB | DOI
 
[7]
2022 | Konferenzbeitrag | FH-PUB-ID: 2569
C. Hoppe, N. Migenda, D. Pelkmann, D. A. Hötte, and W. Schenck, “Collaborative System for Question Answering in German Case Law Documents,” in Collaborative Networks in Digitalization and Society 5.0, Lisbon, Portugal, 2022, pp. 303–312.
HSBI-PUB | DOI
 
[6]
2021 | Konferenzbeitrag | FH-PUB-ID: 2570
C. Hoppe, D. Pelkmann, N. Migenda, D. A. Hotte, and W. Schenck, “Towards Intelligent Legal Advisors for Document Retrieval and Question-Answering in German Legal Documents,” in 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA, USA, 2021, pp. 29–32.
HSBI-PUB | DOI
 
[5]
2021 | Konferenzbeitrag | FH-PUB-ID: 2571
T. Voigt et al., “Advanced Data Analytics Platform for Manufacturing Companies,” in 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ), Vasteras, Sweden, 2021, pp. 01–08.
HSBI-PUB | DOI
 
[4]
2021 | Konferenzbeitrag | FH-PUB-ID: 2572
L. Steinmann, N. Migenda, T. Voigt, M. Kohlhase, and W. Schenck, “Variational Autoencoder based Novelty Detection for Real-World Time Series,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 1–7.
HSBI-PUB | DOI
 
[3]
2021 | Artikel | FH-PUB-ID: 1203
N. Migenda, R. Möller, and W. Schenck, “Adaptive dimensionality reduction for neural network-based online principal component analysis,” PLOS ONE, vol. 16, no. 3, 2021.
HSBI-PUB | DOI
 
[2]
2020 | Konferenzbeitrag | FH-PUB-ID: 2574
N. Migenda and W. Schenck, “Adaptive Dimensionality Reduction for Local Principal Component Analysis,” in 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 2020, pp. 1579–1586.
HSBI-PUB | DOI
 
[1]
2019 | Buchbeitrag | FH-PUB-ID: 1208
N. Migenda, R. Möller, and W. Schenck, “Adaptive Dimensionality Adjustment for Online ‘Principal Component Analysis,’” in Intelligent Data Engineering and Automated Learning – IDEAL 2019. 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I, H. Yin, D. Camacho, P. Tino, A. J. Tallón-Ballesteros, R. Menezes, and R. Allmendinger, Eds. Cham: Springer International Publishing, 2019, pp. 76–84.
HSBI-PUB | DOI
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: IEEE

Export / Einbettung