PUBLIKATIONSSERVER

H-NGPCA: Hierarchical clustering of data streams with adaptive number of clusters and adaptive dimensionality

N. Migenda, R. Möller, W. Schenck, PLOS One 21 (2026).

Download (ext.)
OA
Artikel | Veröffentlicht | Englisch
Autor*in
Migenda, NicoFH Bielefeld ; Möller, Ralf; Schenck, WolframFH Bielefeld
Abstract
We present H-NGPCA, a hierarchical clustering algorithm for data streams that integrates an adaptive unit number growth and local dimensionality control. Unlike existing algorithm, H-NGPCA combines the characteristics of centroid-based, model-based and hierarchical clustering. H-NGPCA builds a hierarchical structure of local Principal Component Analysis (PCA) units, where each unit is a hyper-ellipsoid whose shape is updated by a neural network-based online PCA method. The re-positioning of each unit is handled by Neural Gas, a centroid-based clustering algorithm. In the hierarchical tree structure, new units are created in a branch if suggested by a splitting criterion. In addition, each unit determines its own dimensionality based on the data represented by the unit. In extensive benchmarks, H-NGPCA not only surpasses all competing online algorithms with adaptive unit numbers but also achieves competitive performance with state-of-the-art offline methods, reaching an average NMI = 0.87 and CI = 0.26. This demonstrates that H-NGPCA achieves both online adaptability and offline-level accuracy.
Erscheinungsjahr
Zeitschriftentitel
PLOS One
Band
21
Zeitschriftennummer
1
Artikelnummer
e0339171
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of LibreCat University.
FH-PUB-ID

Zitieren

Migenda, Nico ; Möller, Ralf ; Schenck, Wolfram: H-NGPCA: Hierarchical clustering of data streams with adaptive number of clusters and adaptive dimensionality. In: PLOS One Bd. 21, Public Library of Science (PLoS) (2026), Nr. 1
Migenda N, Möller R, Schenck W. H-NGPCA: Hierarchical clustering of data streams with adaptive number of clusters and adaptive dimensionality. PLOS One. 2026;21(1). doi:10.1371/journal.pone.0339171
Migenda, N., Möller, R., & Schenck, W. (2026). H-NGPCA: Hierarchical clustering of data streams with adaptive number of clusters and adaptive dimensionality. PLOS One, 21(1). https://doi.org/10.1371/journal.pone.0339171
@article{Migenda_Möller_Schenck_2026, title={H-NGPCA: Hierarchical clustering of data streams with adaptive number of clusters and adaptive dimensionality}, volume={21}, DOI={10.1371/journal.pone.0339171}, number={1e0339171}, journal={PLOS One}, publisher={Public Library of Science (PLoS)}, author={Migenda, Nico and Möller, Ralf and Schenck, Wolfram}, year={2026} }
Migenda, Nico, Ralf Möller, and Wolfram Schenck. “H-NGPCA: Hierarchical Clustering of Data Streams with Adaptive Number of Clusters and Adaptive Dimensionality.” PLOS One 21, no. 1 (2026). https://doi.org/10.1371/journal.pone.0339171.
N. Migenda, R. Möller, and W. Schenck, “H-NGPCA: Hierarchical clustering of data streams with adaptive number of clusters and adaptive dimensionality,” PLOS One, vol. 21, no. 1, 2026.
Migenda, Nico, et al. “H-NGPCA: Hierarchical Clustering of Data Streams with Adaptive Number of Clusters and Adaptive Dimensionality.” PLOS One, vol. 21, no. 1, e0339171, Public Library of Science (PLoS), 2026, doi:10.1371/journal.pone.0339171.

Link(s) zu Volltext(en)
URL
Access Level
Restricted Closed Access

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar