PUBLIKATIONSSERVER

7 Publikationen

Alle markieren

[7]
2025 | Artikel | FH-PUB-ID: 6445 | OA
Bachmann, Bernhard ; Bonaventura, Luca ; Casella, Francesco ; Fernández-García, Soledad ; Gómez-Mármol, Macarena ; Hannebohm, Philip: Self-Adjusting Multi-Rate Runge-Kutta Methods: Analysis and Efficient Implementation in An Open Source Framework. In: Journal of Scientific Computing Bd. 105, Springer Science and Business Media LLC (2025), Nr. 1
HSBI-PUB | DOI | Download (ext.)
 
[6]
2025 | Preprint | FH-PUB-ID: 6448 | OA
Brandt, Felix ; Heuermann, Andreas ; Hannebohm, Philip ; Bachmann, Bernhard: Residual-Informed Learning of Solutions to Algebraic Loops. In: arXiv:2510.09317 (2025)
HSBI-PUB | Download (ext.)
 
[5]
2025 | Konferenzbeitrag | FH-PUB-ID: 6449 | OA
Casella, Francesco ; Bachmann, Bernhard ; Abdelhak, Karim ; Hannebohm, Philip ; Van der Stelt, Teus: Diagnosing Newton’s Solver Convergence Failures in the Initialization of Modelica Models. In: Proceedings of the 16th International Modelica&FMI Conference, September 8 – 10, 2025, Lucerne University of Applied Sciences and Arts (HSLU), Linköping Electronic Conference Proceedings. Bd. 218 : Linköping University Electronic Press, 2025
HSBI-PUB | DOI | Download (ext.)
 
[4]
2025 | Konferenzbeitrag | FH-PUB-ID: 6359 | OA
Langenkamp, Linus ; Hannebohm, Philip ; Bachmann, Bernhard: Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming. In: Zimmer, D. ; Müller, U. C. (Hrsg.): Proceedings of the 16th International Modelica&FMI Conference. Bd. 218 : Linköping University Electronic Press, 2025, S. 445–457
HSBI-PUB | Dateien verfügbar | DOI | Download (ext.)
 
[3]
2025 | Kurzbeitrag Konferenz | FH-PUB-ID: 6357 | OA
Hannebohm, Philip ; Bachmann, Bernhard: Selective Evaluation of RHS during Multi-Rate Simulation. In: Zimmer, D. ; Müller, U. C. (Hrsg.): Proceedings of the 16th International Modelica&FMI Conference, Linköping Electronic Conference Proceedings. Bd. 218 : Linköping University Electronic Press, 2025, S. 943–947
HSBI-PUB | Dateien verfügbar | DOI
 
[2]
2023 | Kurzbeitrag Konferenz | FH-PUB-ID: 4620 | OA
Heuermann, Andreas ; Hannebohm, Philip ; Schäfer, Matthias ; Bachmann, Bernhard: Fehlerkontrollierte ML-Surrogate zur beschleunigten Simulation nichtlinearer Gleichungssysteme in Modelica. In:  : Unpublished, 2023
HSBI-PUB | Dateien verfügbar | DOI
 
[1]
2023 | Konferenzbeitrag | FH-PUB-ID: 4618
Heuermann, Andreas ; Hannebohm, Philip ; Schäfer, Matthias ; Bachmann, Bernhard: Accelerating the simulation of equation-based models by replacing non-linear algebraic loops with error-controlled machine learning surrogates. In: Müller, D. ; Monti, A. ; Benigni, A. (Hrsg.): Proceedings of the 15th International Modelica Conference 2023, Aachen, October 9-11, Linköping Electronic Conference Proceedings. Bd. 204 : Linköping University Electronic Press, 2023, S. 275–284
HSBI-PUB | DOI
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: DIN 1505

Export / Einbettung

7 Publikationen

Alle markieren

[7]
2025 | Artikel | FH-PUB-ID: 6445 | OA
Bachmann, Bernhard ; Bonaventura, Luca ; Casella, Francesco ; Fernández-García, Soledad ; Gómez-Mármol, Macarena ; Hannebohm, Philip: Self-Adjusting Multi-Rate Runge-Kutta Methods: Analysis and Efficient Implementation in An Open Source Framework. In: Journal of Scientific Computing Bd. 105, Springer Science and Business Media LLC (2025), Nr. 1
HSBI-PUB | DOI | Download (ext.)
 
[6]
2025 | Preprint | FH-PUB-ID: 6448 | OA
Brandt, Felix ; Heuermann, Andreas ; Hannebohm, Philip ; Bachmann, Bernhard: Residual-Informed Learning of Solutions to Algebraic Loops. In: arXiv:2510.09317 (2025)
HSBI-PUB | Download (ext.)
 
[5]
2025 | Konferenzbeitrag | FH-PUB-ID: 6449 | OA
Casella, Francesco ; Bachmann, Bernhard ; Abdelhak, Karim ; Hannebohm, Philip ; Van der Stelt, Teus: Diagnosing Newton’s Solver Convergence Failures in the Initialization of Modelica Models. In: Proceedings of the 16th International Modelica&FMI Conference, September 8 – 10, 2025, Lucerne University of Applied Sciences and Arts (HSLU), Linköping Electronic Conference Proceedings. Bd. 218 : Linköping University Electronic Press, 2025
HSBI-PUB | DOI | Download (ext.)
 
[4]
2025 | Konferenzbeitrag | FH-PUB-ID: 6359 | OA
Langenkamp, Linus ; Hannebohm, Philip ; Bachmann, Bernhard: Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming. In: Zimmer, D. ; Müller, U. C. (Hrsg.): Proceedings of the 16th International Modelica&FMI Conference. Bd. 218 : Linköping University Electronic Press, 2025, S. 445–457
HSBI-PUB | Dateien verfügbar | DOI | Download (ext.)
 
[3]
2025 | Kurzbeitrag Konferenz | FH-PUB-ID: 6357 | OA
Hannebohm, Philip ; Bachmann, Bernhard: Selective Evaluation of RHS during Multi-Rate Simulation. In: Zimmer, D. ; Müller, U. C. (Hrsg.): Proceedings of the 16th International Modelica&FMI Conference, Linköping Electronic Conference Proceedings. Bd. 218 : Linköping University Electronic Press, 2025, S. 943–947
HSBI-PUB | Dateien verfügbar | DOI
 
[2]
2023 | Kurzbeitrag Konferenz | FH-PUB-ID: 4620 | OA
Heuermann, Andreas ; Hannebohm, Philip ; Schäfer, Matthias ; Bachmann, Bernhard: Fehlerkontrollierte ML-Surrogate zur beschleunigten Simulation nichtlinearer Gleichungssysteme in Modelica. In:  : Unpublished, 2023
HSBI-PUB | Dateien verfügbar | DOI
 
[1]
2023 | Konferenzbeitrag | FH-PUB-ID: 4618
Heuermann, Andreas ; Hannebohm, Philip ; Schäfer, Matthias ; Bachmann, Bernhard: Accelerating the simulation of equation-based models by replacing non-linear algebraic loops with error-controlled machine learning surrogates. In: Müller, D. ; Monti, A. ; Benigni, A. (Hrsg.): Proceedings of the 15th International Modelica Conference 2023, Aachen, October 9-11, Linköping Electronic Conference Proceedings. Bd. 204 : Linköping University Electronic Press, 2023, S. 275–284
HSBI-PUB | DOI
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: DIN 1505

Export / Einbettung