PUBLIKATIONSSERVER

Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming

L. Langenkamp, P. Hannebohm, B. Bachmann, in: D. Zimmer, U.C. Müller (Eds.), Proceedings of the 16th International Modelica&FMI Conference, Linköping University Electronic Press, 2025, pp. 445–457.

Download
OA 11.49 MB
Download (ext.)
OA
Konferenzbeitrag | Veröffentlicht | Englisch
Herausgeber*in
Zimmer, Dirk; Müller, Ulf Christian
Abstract
We propose a novel approach for training Physics-enhanced Neural ODEs (PeN-ODEs) by expressing the training process as a dynamic optimization problem. The full model, including neural components, is discretized using a high-order implicit Runge-Kutta method with flipped Legendre-Gauss-Radau points, resulting in a large-scale nonlinear program (NLP) efficiently solved by state-of-the-art NLP solvers such as Ipopt. This formulation enables simultaneous optimization of network parameters and state trajectories, addressing key limitations of ODE solver-based training in terms of stability, runtime, and accuracy. Extending on a recent direct collocation-based method for Neural ODEs, we generalize to PeN-ODEs, incorporate physical constraints, and present a custom, parallelized, open-source implementation. Benchmarks on a Quarter Vehicle Model and a Van-der-Pol oscillator demonstrate superior accuracy, speed, generalization with smaller networks compared to other training techniques. We also outline a planned integration into OpenModelica to enable accessible training of Neural DAEs.
Erscheinungsjahr
Titel des Konferenzbandes
Proceedings of the 16th International Modelica&FMI Conference
Band
218
Seite
445 - 457
Konferenz
The 16th International Modelica&FMI Conference
Konferenzort
Luzern
Konferenzdatum
2025-09-08 – 2025-09-10
FH-PUB-ID

Zitieren

Langenkamp, Linus ; Hannebohm, Philip ; Bachmann, Bernhard: Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming. In: Zimmer, D. ; Müller, U. C. (Hrsg.): Proceedings of the 16th International Modelica&FMI Conference. Bd. 218 : Linköping University Electronic Press, 2025, S. 445–457
Langenkamp L, Hannebohm P, Bachmann B. Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming. In: Zimmer D, Müller UC, eds. Proceedings of the 16th International Modelica&FMI Conference. Vol 218. Linköping University Electronic Press; 2025:445-457. doi:10.3384/ecp218445
Langenkamp, L., Hannebohm, P., & Bachmann, B. (2025). Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming. In D. Zimmer & U. C. Müller (Eds.), Proceedings of the 16th International Modelica&FMI Conference (Vol. 218, pp. 445–457). Luzern: Linköping University Electronic Press. https://doi.org/10.3384/ecp218445
@inproceedings{Langenkamp_Hannebohm_Bachmann_2025, title={Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming}, volume={218}, DOI={10.3384/ecp218445}, booktitle={Proceedings of the 16th International Modelica&FMI Conference}, publisher={Linköping University Electronic Press}, author={Langenkamp, Linus and Hannebohm, Philip and Bachmann, Bernhard}, editor={Zimmer, Dirk and Müller, Ulf ChristianEditors}, year={2025}, pages={445–457} }
Langenkamp, Linus, Philip Hannebohm, and Bernhard Bachmann. “Efficient Training of Physics-Enhanced Neural ODEs via Direct Collocation and Nonlinear Programming.” In Proceedings of the 16th International Modelica&FMI Conference, edited by Dirk Zimmer and Ulf Christian Müller, 218:445–57. Linköping University Electronic Press, 2025. https://doi.org/10.3384/ecp218445.
L. Langenkamp, P. Hannebohm, and B. Bachmann, “Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming,” in Proceedings of the 16th International Modelica&FMI Conference, Luzern, 2025, vol. 218, pp. 445–457.
Langenkamp, Linus, et al. “Efficient Training of Physics-Enhanced Neural ODEs via Direct Collocation and Nonlinear Programming.” Proceedings of the 16th International Modelica&FMI Conference, edited by Dirk Zimmer and Ulf Christian Müller, vol. 218, Linköping University Electronic Press, 2025, pp. 445–57, doi:10.3384/ecp218445.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
paper.pdf 11.49 MB
Access Level
OA Open Access
Zuletzt Hochgeladen
2025-12-02T13:48:28Z


Link(s) zu Volltext(en)
URL
Access Level
Restricted Closed Access

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar