Data-Driven Models for Control Engineering Applications Using the Koopman Operator
A. Junker, J. Timmermann, A. Trächtler, in: IEEE (Ed.), 2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC), IEEE, 2022, pp. 1–9.
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag
| Veröffentlicht
| Englisch
Autor*in
Junker, Annika
;
Timmermann, Julia;
Trächtler, Ansgar
herausgebende Körperschaft
IEEE
Abstract
Within this work, we investigate how data-driven numerical approximation methods of the Koopman operator can be used in practical control engineering applications. We refer to the method Extended Dynamic Mode Decomposition (EDMD), which approximates a nonlinear dynamical system as a linear model. This makes the method ideal for control engineering applications, because a linear system description is often assumed for this purpose. Using academic examples, we simulatively analyze the prediction performance of the learned EDMD models and show how relevant system properties like stability, controllability, and observability are reflected by the EDMD model, which is a critical requirement for a successful control design process. Subsequently, we present our experimental results on a mechatronic test bench and evaluate the applicability to the control engineering design process. As a result, the investigated methods are suitable as a low-effort alternative for the design steps of model building and adaptation in the classical model-based controller design method.
Erscheinungsjahr
Titel des Konferenzbandes
2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC)
Seite
1-9
Konferenz
2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC)
Konferenzort
Cairo, Egypt
Konferenzdatum
2022-05-10 – 2022-05-12
FH-PUB-ID
Zitieren
Junker, Annika ; Timmermann, Julia ; Trächtler, Ansgar: Data-Driven Models for Control Engineering Applications Using the Koopman Operator. In: IEEE (Hrsg.): 2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC) : IEEE, 2022, S. 1–9
Junker A, Timmermann J, Trächtler A. Data-Driven Models for Control Engineering Applications Using the Koopman Operator. In: IEEE, ed. 2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC). IEEE; 2022:1-9. doi:10.1109/AIRC56195.2022.9836980
Junker, A., Timmermann, J., & Trächtler, A. (2022). Data-Driven Models for Control Engineering Applications Using the Koopman Operator. In IEEE (Ed.), 2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC) (pp. 1–9). Cairo, Egypt : IEEE. https://doi.org/10.1109/AIRC56195.2022.9836980
@inproceedings{Junker_Timmermann_Trächtler_2022, title={Data-Driven Models for Control Engineering Applications Using the Koopman Operator}, DOI={10.1109/AIRC56195.2022.9836980}, booktitle={2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC)}, publisher={IEEE}, author={Junker, Annika and Timmermann, Julia and Trächtler, Ansgar}, editor={IEEEEditor}, year={2022}, pages={1–9} }
Junker, Annika, Julia Timmermann, and Ansgar Trächtler. “Data-Driven Models for Control Engineering Applications Using the Koopman Operator.” In 2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC), edited by IEEE, 1–9. IEEE, 2022. https://doi.org/10.1109/AIRC56195.2022.9836980.
A. Junker, J. Timmermann, and A. Trächtler, “Data-Driven Models for Control Engineering Applications Using the Koopman Operator,” in 2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC), Cairo, Egypt , 2022, pp. 1–9.
Junker, Annika, et al. “Data-Driven Models for Control Engineering Applications Using the Koopman Operator.” 2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC), edited by IEEE, IEEE, 2022, pp. 1–9, doi:10.1109/AIRC56195.2022.9836980.