Learning Data-Driven PCHD Models for Control Engineering Applications*
A. Junker, J. Timmermann, A. Trächtler, in: R. Lajouad , F.-Z. Chaoui , F. Giri (Eds.), IFAC-PapersOnLine, Elsevier BV, 2022, pp. 389–394.
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag
| Veröffentlicht
| Englisch
Autor*in
Junker, Annika
;
Timmermann, Julia;
Trächtler, Ansgar
Herausgeber*in
Lajouad , Rachid ;
Chaoui , Fatima-Zahra;
Giri, Fouad
Abstract
The design of control engineering applications usually requires a model that accurately represents the dynamics of the real system. In addition to classical physical modeling, powerful data-driven approaches are increasingly used. However, the resulting models are not necessarily in a form that is advantageous for controller design. In the control engineering domain, it is highly beneficial if the system dynamics is given in PCHD form (Port-Controlled Hamiltonian Systems with Dissipation) because globally stable control laws can be easily realized while physical interpretability is guaranteed. In this work, we exploit the advantages of both strategies and present a new framework to obtain nonlinear high accurate system models in a data-driven way that are directly in PCHD form. We demonstrate the success of our method by model-based application on an academic example, as well as experimentally on a test bed.
Erscheinungsjahr
Titel des Konferenzbandes
IFAC-PapersOnLine
Band
55
Zeitschriftennummer
12
Seite
389-394
Konferenz
14th IFAC Workshop on Adaptive and Learning Control Systems ALCOS 2022
Konferenzort
Casablanca, Morocco
Konferenzdatum
2022-06-29 – 2022-07-01
ISSN
FH-PUB-ID
Zitieren
Junker, Annika ; Timmermann, Julia ; Trächtler, Ansgar: Learning Data-Driven PCHD Models for Control Engineering Applications*. In: Lajouad , R. ; Chaoui , F.-Z. ; Giri, F. (Hrsg.): IFAC-PapersOnLine. Bd. 55 : Elsevier BV, 2022, S. 389–394
Junker A, Timmermann J, Trächtler A. Learning Data-Driven PCHD Models for Control Engineering Applications*. In: Lajouad R, Chaoui F-Z, Giri F, eds. IFAC-PapersOnLine. Vol 55. Elsevier BV; 2022:389-394. doi:10.1016/j.ifacol.2022.07.343
Junker, A., Timmermann, J., & Trächtler, A. (2022). Learning Data-Driven PCHD Models for Control Engineering Applications*. In R. Lajouad , F.-Z. Chaoui , & F. Giri (Eds.), IFAC-PapersOnLine (Vol. 55, pp. 389–394). Casablanca, Morocco: Elsevier BV. https://doi.org/10.1016/j.ifacol.2022.07.343
@inproceedings{Junker_Timmermann_Trächtler_2022, title={Learning Data-Driven PCHD Models for Control Engineering Applications*}, volume={55}, DOI={10.1016/j.ifacol.2022.07.343}, number={12}, booktitle={IFAC-PapersOnLine}, publisher={Elsevier BV}, author={Junker, Annika and Timmermann, Julia and Trächtler, Ansgar}, editor={Lajouad , Rachid and Chaoui , Fatima-Zahra and Giri, Fouad Editors}, year={2022}, pages={389–394} }
Junker, Annika, Julia Timmermann, and Ansgar Trächtler. “Learning Data-Driven PCHD Models for Control Engineering Applications*.” In IFAC-PapersOnLine, edited by Rachid Lajouad , Fatima-Zahra Chaoui , and Fouad Giri, 55:389–94. Elsevier BV, 2022. https://doi.org/10.1016/j.ifacol.2022.07.343.
A. Junker, J. Timmermann, and A. Trächtler, “Learning Data-Driven PCHD Models for Control Engineering Applications*,” in IFAC-PapersOnLine, Casablanca, Morocco, 2022, vol. 55, no. 12, pp. 389–394.
Junker, Annika, et al. “Learning Data-Driven PCHD Models for Control Engineering Applications*.” IFAC-PapersOnLine, edited by Rachid Lajouad et al., vol. 55, no. 12, Elsevier BV, 2022, pp. 389–94, doi:10.1016/j.ifacol.2022.07.343.