PUBLIKATIONSSERVER

ATTNFNET: feature aware depth-to-pressure translation with cGAN training

N.H. Manavar, H.G. Meyer, J. Waßmuth, B. Hammer, A. Schneider, Frontiers in Medical Technology 7 (2025).

Download (ext.)
OA
Artikel | Veröffentlicht | Englisch
Abstract
Excessive pressure and shear forces on bedridden patients can lead to pressure injuries, particularly on those with existing ulcers. Monitoring pressure distribution is crucial for preventing such injuries by identifying high-risk areas. To address this challenge, we propose Attention Feature Network (AttnFnet), a self-attention-based deep neural network that generates pressure distribution maps from single-depth images using Conditional Generative Adversarial Network (cGAN) training. We introduce a mixed-domain SSIML2 loss function, combining structural similarity and pixel-level accuracy, along with adversarial loss, to enhance the prediction of pressure distributions for subjects lying in a bed. Evaluation results from the benchmark dataset demonstrate that AttnFnet outperforms existing methods in terms of Structural Similarity Index Measure (SSIM) and quality analysis, providing accurate pressure distribution estimation from a single depth image.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Medical Technology
Band
7
eISSN
FH-PUB-ID

Zitieren

Manavar, Neevkumar Hareshbhai ; Meyer, Hanno Gerd ; Waßmuth, Joachim ; Hammer, Barbara ; Schneider, Axel: ATTNFNET: feature aware depth-to-pressure translation with cGAN training. In: Frontiers in Medical Technology Bd. 7, Frontiers Media SA (2025)
Manavar NH, Meyer HG, Waßmuth J, Hammer B, Schneider A. ATTNFNET: feature aware depth-to-pressure translation with cGAN training. Frontiers in Medical Technology. 2025;7. doi:10.3389/fmedt.2025.1621922
Manavar, N. H., Meyer, H. G., Waßmuth, J., Hammer, B., & Schneider, A. (2025). ATTNFNET: feature aware depth-to-pressure translation with cGAN training. Frontiers in Medical Technology, 7. https://doi.org/10.3389/fmedt.2025.1621922
@article{Manavar_Meyer_Waßmuth_Hammer_Schneider_2025, title={ATTNFNET: feature aware depth-to-pressure translation with cGAN training}, volume={7}, DOI={10.3389/fmedt.2025.1621922}, journal={Frontiers in Medical Technology}, publisher={Frontiers Media SA}, author={Manavar, Neevkumar Hareshbhai and Meyer, Hanno Gerd and Waßmuth, Joachim and Hammer, Barbara and Schneider, Axel}, year={2025} }
Manavar, Neevkumar Hareshbhai, Hanno Gerd Meyer, Joachim Waßmuth, Barbara Hammer, and Axel Schneider. “ATTNFNET: Feature Aware Depth-to-Pressure Translation with CGAN Training.” Frontiers in Medical Technology 7 (2025). https://doi.org/10.3389/fmedt.2025.1621922.
N. H. Manavar, H. G. Meyer, J. Waßmuth, B. Hammer, and A. Schneider, “ATTNFNET: feature aware depth-to-pressure translation with cGAN training,” Frontiers in Medical Technology, vol. 7, 2025.
Manavar, Neevkumar Hareshbhai, et al. “ATTNFNET: Feature Aware Depth-to-Pressure Translation with CGAN Training.” Frontiers in Medical Technology, vol. 7, Frontiers Media SA, 2025, doi:10.3389/fmedt.2025.1621922.

Link(s) zu Volltext(en)
URL
Access Level
Restricted Closed Access

Export

Markierte Publikationen

Open Data LibreCat

Suchen in

Google Scholar