PUBLIKATIONSSERVER

18 Publikationen

Alle markieren

[18]
2025 | Buchbeitrag | FH-PUB-ID: 6273 | OA
Informed Active Learning with Decision Trees to Balance Exploration and Exploitation
M. Schöne, B. Jaster, J. Bültemeier, M. Kohlhase, in: Institute for Data Science Solutions (Ed.), Kongress KI@HSBI2025 Zukunft Im Fokus – Posterbeiträge, Hochschule Bielefeld, Bielefeld, 2025, pp. 26–27.
HSBI-PUB | DOI | Download (ext.)
 
[17]
2025 | Konferenzbeitrag | FH-PUB-ID: 6267
AI Workflow for Scarce Data: A Modular Approach to Optimise Processes
J. Bültemeier, C.-A. Holst, V. Lohweg, M. Schöne, B. Jaster, M. Kohlhase, in: 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2025, pp. 1–4.
HSBI-PUB | DOI
 
[16]
2025 | Artikel | FH-PUB-ID: 6268 | OA
Incorporation of structural properties of the response surface into oblique model trees
M. Schöne, M. Kohlhase, O. Nelles, At - Automatisierungstechnik 73 (2025) 727–739.
HSBI-PUB | DOI | Download (ext.)
 
[15]
2025 | Konferenzbeitrag | FH-PUB-ID: 6049 | OA
Pool-based Active Learning with Decision Trees: Incorporate the Tree Structure to Explore and Exploit
M. Schöne, B. Jaster, J. Bültemeier, J. Kösters, C.-A. Holst, M. Kohlhase, in: IEEE (Ed.), 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx), IEEE, 2025, pp. 1–9.
HSBI-PUB | Dateien verfügbar | DOI
 
[14]
2025 | Konferenzbeitrag | FH-PUB-ID: 5904
Pool-based Active Learning with Decision Trees: Incorporate the Tree Structure to Explore and Exploit
M. Schöne, B. Jaster, J. Bültemeier, J. Kösters, C.-A. Holst, M. Kohlhase, in: IEEE (Ed.), 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx), IEEE, 2025, pp. 1–9.
HSBI-PUB | DOI | Download (ext.)
 
[13]
2024 | Artikel | FH-PUB-ID: 6299 | OA
Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme
V. Katter, B. Jaster, M. Schöne, Schriftenreihe des Institute for Data Science Solutions 2 (2024).
HSBI-PUB | DOI | Download (ext.)
 
[12]
2024 | Buchbeitrag | FH-PUB-ID: 6272 | OA
AI for Scarce Data (AI4ScaDa) — Maschinelles Lernen und Informationsfusion zur nachhaltigen Nutzung von Labor- und Kundendaten
M. Schöne, J. Bültemeier, in: Institute for Data Science Solutions (Ed.), Kongress KI@HSBI2023 Solutions Im Fokus – Posterbeiträge, Hochschule Bielefeld, Bielefeld, 2024, pp. 28–29.
HSBI-PUB | DOI | Download (ext.)
 
[11]
2024 | Konferenzbeitrag | FH-PUB-ID: 5882 | OA
Dichte-skaliertes Optimierungskriterium für Sliced Latin Hypercube Designs
J. Bültemeier, M. Schöne, M. Kohlhase, C.-A. Holst, V. Lohweg, O. Nelles, in: H. Schulte, F. Hoffmann, R. Mikut (Eds.), Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024, KIT Scientific Publishing, 2024, pp. 217–231.
HSBI-PUB | DOI | Download (ext.)
 
[10]
2023 | Diskussionspapier | FH-PUB-ID: 3731 | OA
Active Learning mit dem GUIDE-Entscheidungsbaum
J. Kösters, M. Schöne, Active Learning mit dem GUIDE-Entscheidungsbaum, n.d.
HSBI-PUB | Dateien verfügbar | Download (ext.)
 
[9]
2023 | Diskussionspapier | FH-PUB-ID: 3729 | OA
Benchmarking of Machine Learning Models for Tabular Scarce Data
J. Kösters, M. Schöne, M. Kohlhase, Benchmarking of Machine Learning Models for Tabular Scarce Data, n.d.
HSBI-PUB | Dateien verfügbar | Download (ext.)
 
[8]
2022 | Konferenzbeitrag | FH-PUB-ID: 2232
Using Design of Experiments to Support the Commissioning of Industrial Assembly Processes
T. Voigt, M. Schöne, M. Kohlhase, O. Nelles, M. Kuhn, in: H. Yin, D. Camacho, P. Tino (Eds.), Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, Springer International Publishing, Cham, 2022, pp. 379–390.
HSBI-PUB | DOI
 
[7]
2022 | Buchbeitrag | FH-PUB-ID: 2291 | OA
Analysis of the Behavior of Online Decision Trees Under Concept Drift at the Example of FIMT-DD
M. Hanitz, M. Schöne, T. Voigt, M. Kohlhase, in: P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition, MLDM 2022, ibai-publishing, Leipzig, 2022, pp. 121–135.
HSBI-PUB | Download (ext.)
 
[6]
2021 | Konferenzbeitrag | FH-PUB-ID: 1912
Curvature-Oriented Splitting for Multivariate Model Trees
M. Schöne, M. Kohlhase, in: 2021 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2021, pp. 01–09.
HSBI-PUB | DOI | Download (ext.)
 
[5]
2021 | Konferenzbeitrag | FH-PUB-ID: 1560 | OA
Assistenzsystem zur Qualitätssicherung von IoT-Geräten basierend auf AutoML und SHAP
J. Ewerszumrode, M. Schöne, S. Godt, M. Kohlhase, in: H. Schulte, F. Hoffmann, R. Mikut (Eds.), Proceedings - 31. Workshop Computational Intelligence , KIT Scientific Publishing, 2021, pp. 285–305.
HSBI-PUB | DOI | Download (ext.)
 
[4]
2021 | Konferenzbeitrag | FH-PUB-ID: 3718
Space-Filling Designs for Experiments with Assembled Products
T. Voigt, M. Schöne, M. Kohlhase, O. Nelles, M. Kuhn, in: 2021 3rd International Conference on Management Science and Industrial Engineering, ACM, New York, NY, USA, 2021, pp. 192–199.
HSBI-PUB | DOI | Download (ext.)
 
[3]
2021 | Konferenzbeitrag | FH-PUB-ID: 2571
Advanced Data Analytics Platform for Manufacturing Companies
T. Voigt, N. Migenda, M. Schöne, D. Pelkmann, M. Fricke, W. Schenck, M. Kohlhase, in: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ), IEEE, 2021, pp. 01–08.
HSBI-PUB | DOI
 
[2]
2020 | Konferenzbeitrag | FH-PUB-ID: 1916
Least Squares Approach for Multivariate Split Selection in Regression Trees
M. Schöne, M. Kohlhase, in: C. Analide, P. Novais, D. Camacho, H. Yin (Eds.), Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference, Guimaraes, Portugal, November 4–6, 2020, Proceedings, Part I, Springer International Publishing, Cham, 2020, pp. 41–50.
HSBI-PUB | DOI | Download (ext.)
 
[1]
2020 | Buchbeitrag | FH-PUB-ID: 1915 | OA
Least-Squares-Based Construction Algorithm for Oblique and Mixed Regression Trees
M. Schöne, M. Kohlhase, in: H. Schulte, F. Hoffmann, R. Mikut (Eds.), Proceedings - 30. Workshop Computational Intelligence, KIT Scientific Publishing, Karlsruhe, 2020.
HSBI-PUB | DOI | Download (ext.)
 

Suche

Publikationen filtern

Darstellung / Sortierung

Export / Einbettung

18 Publikationen

Alle markieren

[18]
2025 | Buchbeitrag | FH-PUB-ID: 6273 | OA
Informed Active Learning with Decision Trees to Balance Exploration and Exploitation
M. Schöne, B. Jaster, J. Bültemeier, M. Kohlhase, in: Institute for Data Science Solutions (Ed.), Kongress KI@HSBI2025 Zukunft Im Fokus – Posterbeiträge, Hochschule Bielefeld, Bielefeld, 2025, pp. 26–27.
HSBI-PUB | DOI | Download (ext.)
 
[17]
2025 | Konferenzbeitrag | FH-PUB-ID: 6267
AI Workflow for Scarce Data: A Modular Approach to Optimise Processes
J. Bültemeier, C.-A. Holst, V. Lohweg, M. Schöne, B. Jaster, M. Kohlhase, in: 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2025, pp. 1–4.
HSBI-PUB | DOI
 
[16]
2025 | Artikel | FH-PUB-ID: 6268 | OA
Incorporation of structural properties of the response surface into oblique model trees
M. Schöne, M. Kohlhase, O. Nelles, At - Automatisierungstechnik 73 (2025) 727–739.
HSBI-PUB | DOI | Download (ext.)
 
[15]
2025 | Konferenzbeitrag | FH-PUB-ID: 6049 | OA
Pool-based Active Learning with Decision Trees: Incorporate the Tree Structure to Explore and Exploit
M. Schöne, B. Jaster, J. Bültemeier, J. Kösters, C.-A. Holst, M. Kohlhase, in: IEEE (Ed.), 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx), IEEE, 2025, pp. 1–9.
HSBI-PUB | Dateien verfügbar | DOI
 
[14]
2025 | Konferenzbeitrag | FH-PUB-ID: 5904
Pool-based Active Learning with Decision Trees: Incorporate the Tree Structure to Explore and Exploit
M. Schöne, B. Jaster, J. Bültemeier, J. Kösters, C.-A. Holst, M. Kohlhase, in: IEEE (Ed.), 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx), IEEE, 2025, pp. 1–9.
HSBI-PUB | DOI | Download (ext.)
 
[13]
2024 | Artikel | FH-PUB-ID: 6299 | OA
Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme
V. Katter, B. Jaster, M. Schöne, Schriftenreihe des Institute for Data Science Solutions 2 (2024).
HSBI-PUB | DOI | Download (ext.)
 
[12]
2024 | Buchbeitrag | FH-PUB-ID: 6272 | OA
AI for Scarce Data (AI4ScaDa) — Maschinelles Lernen und Informationsfusion zur nachhaltigen Nutzung von Labor- und Kundendaten
M. Schöne, J. Bültemeier, in: Institute for Data Science Solutions (Ed.), Kongress KI@HSBI2023 Solutions Im Fokus – Posterbeiträge, Hochschule Bielefeld, Bielefeld, 2024, pp. 28–29.
HSBI-PUB | DOI | Download (ext.)
 
[11]
2024 | Konferenzbeitrag | FH-PUB-ID: 5882 | OA
Dichte-skaliertes Optimierungskriterium für Sliced Latin Hypercube Designs
J. Bültemeier, M. Schöne, M. Kohlhase, C.-A. Holst, V. Lohweg, O. Nelles, in: H. Schulte, F. Hoffmann, R. Mikut (Eds.), Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024, KIT Scientific Publishing, 2024, pp. 217–231.
HSBI-PUB | DOI | Download (ext.)
 
[10]
2023 | Diskussionspapier | FH-PUB-ID: 3731 | OA
Active Learning mit dem GUIDE-Entscheidungsbaum
J. Kösters, M. Schöne, Active Learning mit dem GUIDE-Entscheidungsbaum, n.d.
HSBI-PUB | Dateien verfügbar | Download (ext.)
 
[9]
2023 | Diskussionspapier | FH-PUB-ID: 3729 | OA
Benchmarking of Machine Learning Models for Tabular Scarce Data
J. Kösters, M. Schöne, M. Kohlhase, Benchmarking of Machine Learning Models for Tabular Scarce Data, n.d.
HSBI-PUB | Dateien verfügbar | Download (ext.)
 
[8]
2022 | Konferenzbeitrag | FH-PUB-ID: 2232
Using Design of Experiments to Support the Commissioning of Industrial Assembly Processes
T. Voigt, M. Schöne, M. Kohlhase, O. Nelles, M. Kuhn, in: H. Yin, D. Camacho, P. Tino (Eds.), Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings, Springer International Publishing, Cham, 2022, pp. 379–390.
HSBI-PUB | DOI
 
[7]
2022 | Buchbeitrag | FH-PUB-ID: 2291 | OA
Analysis of the Behavior of Online Decision Trees Under Concept Drift at the Example of FIMT-DD
M. Hanitz, M. Schöne, T. Voigt, M. Kohlhase, in: P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition, MLDM 2022, ibai-publishing, Leipzig, 2022, pp. 121–135.
HSBI-PUB | Download (ext.)
 
[6]
2021 | Konferenzbeitrag | FH-PUB-ID: 1912
Curvature-Oriented Splitting for Multivariate Model Trees
M. Schöne, M. Kohlhase, in: 2021 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2021, pp. 01–09.
HSBI-PUB | DOI | Download (ext.)
 
[5]
2021 | Konferenzbeitrag | FH-PUB-ID: 1560 | OA
Assistenzsystem zur Qualitätssicherung von IoT-Geräten basierend auf AutoML und SHAP
J. Ewerszumrode, M. Schöne, S. Godt, M. Kohlhase, in: H. Schulte, F. Hoffmann, R. Mikut (Eds.), Proceedings - 31. Workshop Computational Intelligence , KIT Scientific Publishing, 2021, pp. 285–305.
HSBI-PUB | DOI | Download (ext.)
 
[4]
2021 | Konferenzbeitrag | FH-PUB-ID: 3718
Space-Filling Designs for Experiments with Assembled Products
T. Voigt, M. Schöne, M. Kohlhase, O. Nelles, M. Kuhn, in: 2021 3rd International Conference on Management Science and Industrial Engineering, ACM, New York, NY, USA, 2021, pp. 192–199.
HSBI-PUB | DOI | Download (ext.)
 
[3]
2021 | Konferenzbeitrag | FH-PUB-ID: 2571
Advanced Data Analytics Platform for Manufacturing Companies
T. Voigt, N. Migenda, M. Schöne, D. Pelkmann, M. Fricke, W. Schenck, M. Kohlhase, in: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ), IEEE, 2021, pp. 01–08.
HSBI-PUB | DOI
 
[2]
2020 | Konferenzbeitrag | FH-PUB-ID: 1916
Least Squares Approach for Multivariate Split Selection in Regression Trees
M. Schöne, M. Kohlhase, in: C. Analide, P. Novais, D. Camacho, H. Yin (Eds.), Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference, Guimaraes, Portugal, November 4–6, 2020, Proceedings, Part I, Springer International Publishing, Cham, 2020, pp. 41–50.
HSBI-PUB | DOI | Download (ext.)
 
[1]
2020 | Buchbeitrag | FH-PUB-ID: 1915 | OA
Least-Squares-Based Construction Algorithm for Oblique and Mixed Regression Trees
M. Schöne, M. Kohlhase, in: H. Schulte, F. Hoffmann, R. Mikut (Eds.), Proceedings - 30. Workshop Computational Intelligence, KIT Scientific Publishing, Karlsruhe, 2020.
HSBI-PUB | DOI | Download (ext.)
 

Suche

Publikationen filtern

Darstellung / Sortierung

Export / Einbettung