AI Workflow for Scarce Data: A Modular Approach to Optimise Processes
J. Bültemeier, C.-A. Holst, V. Lohweg, M. Schöne, B. Jaster, M. Kohlhase, in: 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2025, pp. 1–4.
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag
| Veröffentlicht
| Englisch
Autor*in
Bültemeier, Julian;
Holst, Christoph-Alexander;
Lohweg, Volker;
Schöne, Marvin
;
Jaster, Bjarne
;
Kohlhase, Martin

Abstract
Many small and medium-sized enterprises lack large datasets and AI expertise, limiting their ability to apply traditional AI methods. However, they often possess valuable yet underutilised experimental data. This paper introduces an interpretable AI workflow tailored for such scarce data environments. It guides users through experimental design, data labelling, Decision Trees, and Active Learning to optimise processes efficiently. A bread roll baking use case illustrates the workflow’s practical value and transferability to other industrial settings.
Erscheinungsjahr
Titel des Konferenzbandes
2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA)
Seite
1-4
Konferenz
2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA)
Konferenzort
Porto, Portugal
FH-PUB-ID
Zitieren
Bültemeier, Julian ; Holst, Christoph-Alexander ; Lohweg, Volker ; Schöne, Marvin ; Jaster, Bjarne ; Kohlhase, Martin: AI Workflow for Scarce Data: A Modular Approach to Optimise Processes. In: 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA) : IEEE, 2025, S. 1–4
Bültemeier J, Holst C-A, Lohweg V, Schöne M, Jaster B, Kohlhase M. AI Workflow for Scarce Data: A Modular Approach to Optimise Processes. In: 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE; 2025:1-4. doi:10.1109/ETFA65518.2025.11205664
Bültemeier, J., Holst, C.-A., Lohweg, V., Schöne, M., Jaster, B., & Kohlhase, M. (2025). AI Workflow for Scarce Data: A Modular Approach to Optimise Processes. In 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1–4). Porto, Portugal: IEEE. https://doi.org/10.1109/ETFA65518.2025.11205664
@inproceedings{Bültemeier_Holst_Lohweg_Schöne_Jaster_Kohlhase_2025, title={AI Workflow for Scarce Data: A Modular Approach to Optimise Processes}, DOI={10.1109/ETFA65518.2025.11205664}, booktitle={2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA)}, publisher={IEEE}, author={Bültemeier, Julian and Holst, Christoph-Alexander and Lohweg, Volker and Schöne, Marvin and Jaster, Bjarne and Kohlhase, Martin}, year={2025}, pages={1–4} }
Bültemeier, Julian, Christoph-Alexander Holst, Volker Lohweg, Marvin Schöne, Bjarne Jaster, and Martin Kohlhase. “AI Workflow for Scarce Data: A Modular Approach to Optimise Processes.” In 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA), 1–4. IEEE, 2025. https://doi.org/10.1109/ETFA65518.2025.11205664.
J. Bültemeier, C.-A. Holst, V. Lohweg, M. Schöne, B. Jaster, and M. Kohlhase, “AI Workflow for Scarce Data: A Modular Approach to Optimise Processes,” in 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA), Porto, Portugal, 2025, pp. 1–4.
Bültemeier, Julian, et al. “AI Workflow for Scarce Data: A Modular Approach to Optimise Processes.” 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2025, pp. 1–4, doi:10.1109/ETFA65518.2025.11205664.