PUBLIKATIONSSERVER

9 Publikationen

Alle markieren

[9]
2025 | Konferenzbeitrag | FH-PUB-ID: 5904
Schöne M, Jaster B, Bültemeier J, Kösters J, Holst C-A, Kohlhase M. Pool-based Active Learning with Decision Trees: Incorporate the Tree Structure to Explore and Exploit. In: IEEE, ed. 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx). IEEE; 2025:1-9. doi:10.1109/CITREx64975.2025.10974940
HSBI-PUB | DOI | Download (ext.)
 
[8]
2025 | Konferenzbeitrag | FH-PUB-ID: 6049 | OA
Schöne M, Jaster B, Bültemeier J, Kösters J, Holst C-A, Kohlhase M. Pool-based Active Learning with Decision Trees: Incorporate the Tree Structure to Explore and Exploit. In: IEEE, ed. 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx). IEEE; 2025:1-9. doi:10.57720/6049
HSBI-PUB | Dateien verfügbar | DOI
 
[7]
2025 | Konferenzbeitrag | FH-PUB-ID: 5905
Jaster B, Kohlhase M. Trust Issues in Active Learning and Their Impact on Real-World Applications. In: IEEE, ed. 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx Companion). IEEE; 2025:1-5. doi:10.1109/CITRExCompanion65208.2025.10981492
HSBI-PUB | Dateien verfügbar | DOI | Download (ext.)
 
[6]
2025 | Konferenzbeitrag | FH-PUB-ID: 6045 | OA
Jaster B, Kohlhase M. Trust Issues in Active Learning and Their Impact on Real-World Applications. In: IEEE, ed. 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx Companion). IEEE; 2025:1-5. doi:10.57720/6045
HSBI-PUB | Dateien verfügbar | DOI
 
[5]
2025 | Konferenzbeitrag | FH-PUB-ID: 6267
Bültemeier J, Holst C-A, Lohweg V, Schöne M, Jaster B, Kohlhase M. AI Workflow for Scarce Data: A Modular Approach to Optimise Processes. In: 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE; 2025:1-4. doi:10.1109/ETFA65518.2025.11205664
HSBI-PUB | DOI
 
[4]
2025 | Buchbeitrag | FH-PUB-ID: 6273 | OA
Schöne M, Jaster B, Bültemeier J, Kohlhase M. Informed Active Learning with Decision Trees to Balance Exploration and Exploitation. In: Institute for Data Science Solutions, ed. Kongress KI@HSBI2025 Zukunft Im Fokus – Posterbeiträge. Vol 2. Schriftenreihe des Institute for Data Science Solutions. Bielefeld: Hochschule Bielefeld; 2025:26-27. doi:10.60802/sidas.2025.2
HSBI-PUB | DOI | Download (ext.)
 
[3]
2024 | Artikel | FH-PUB-ID: 6299 | OA
Katter V, Jaster B, Schöne M. Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme . Schriftenreihe des Institute for Data Science Solutions. 2024;2. doi:10.60802/SIDAS.2024.2
HSBI-PUB | DOI | Download (ext.)
 
[2]
2023 | Konferenzbeitrag | FH-PUB-ID: 3713 | OA
Jaster B, Kohlhase M. Active Learning for Regression Problems with Ensemble Methods. In: Schulte H, Hoffmann F, Mikut R, eds. Proceedings - 33. Workshop Computational Intelligence. Karlsruher Institut für Technologie (KIT); 2023:9-29. doi:10.5445/KSP/1000162754
HSBI-PUB | DOI | Download (ext.)
 
[1]
2021 | Artikel | FH-PUB-ID: 6498 | OA
Guss WH, Milani S, Topin N, et al. Towards robust and domain agnostic reinforcement learning competitions. arXiv. 2021. doi:10.48550/ARXIV.2106.03748
HSBI-PUB | DOI | Download (ext.)
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: AMA

Export / Einbettung

9 Publikationen

Alle markieren

[9]
2025 | Konferenzbeitrag | FH-PUB-ID: 5904
Schöne M, Jaster B, Bültemeier J, Kösters J, Holst C-A, Kohlhase M. Pool-based Active Learning with Decision Trees: Incorporate the Tree Structure to Explore and Exploit. In: IEEE, ed. 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx). IEEE; 2025:1-9. doi:10.1109/CITREx64975.2025.10974940
HSBI-PUB | DOI | Download (ext.)
 
[8]
2025 | Konferenzbeitrag | FH-PUB-ID: 6049 | OA
Schöne M, Jaster B, Bültemeier J, Kösters J, Holst C-A, Kohlhase M. Pool-based Active Learning with Decision Trees: Incorporate the Tree Structure to Explore and Exploit. In: IEEE, ed. 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx). IEEE; 2025:1-9. doi:10.57720/6049
HSBI-PUB | Dateien verfügbar | DOI
 
[7]
2025 | Konferenzbeitrag | FH-PUB-ID: 5905
Jaster B, Kohlhase M. Trust Issues in Active Learning and Their Impact on Real-World Applications. In: IEEE, ed. 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx Companion). IEEE; 2025:1-5. doi:10.1109/CITRExCompanion65208.2025.10981492
HSBI-PUB | Dateien verfügbar | DOI | Download (ext.)
 
[6]
2025 | Konferenzbeitrag | FH-PUB-ID: 6045 | OA
Jaster B, Kohlhase M. Trust Issues in Active Learning and Their Impact on Real-World Applications. In: IEEE, ed. 2025 IEEE Symposium on Trustworthy, Explainable and Responsible Computational Intelligence (CITREx Companion). IEEE; 2025:1-5. doi:10.57720/6045
HSBI-PUB | Dateien verfügbar | DOI
 
[5]
2025 | Konferenzbeitrag | FH-PUB-ID: 6267
Bültemeier J, Holst C-A, Lohweg V, Schöne M, Jaster B, Kohlhase M. AI Workflow for Scarce Data: A Modular Approach to Optimise Processes. In: 2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE; 2025:1-4. doi:10.1109/ETFA65518.2025.11205664
HSBI-PUB | DOI
 
[4]
2025 | Buchbeitrag | FH-PUB-ID: 6273 | OA
Schöne M, Jaster B, Bültemeier J, Kohlhase M. Informed Active Learning with Decision Trees to Balance Exploration and Exploitation. In: Institute for Data Science Solutions, ed. Kongress KI@HSBI2025 Zukunft Im Fokus – Posterbeiträge. Vol 2. Schriftenreihe des Institute for Data Science Solutions. Bielefeld: Hochschule Bielefeld; 2025:26-27. doi:10.60802/sidas.2025.2
HSBI-PUB | DOI | Download (ext.)
 
[3]
2024 | Artikel | FH-PUB-ID: 6299 | OA
Katter V, Jaster B, Schöne M. Evaluierung der Leistungsfähigkeit von LSTM-Modellen für die Approximation physikalischer Systeme . Schriftenreihe des Institute for Data Science Solutions. 2024;2. doi:10.60802/SIDAS.2024.2
HSBI-PUB | DOI | Download (ext.)
 
[2]
2023 | Konferenzbeitrag | FH-PUB-ID: 3713 | OA
Jaster B, Kohlhase M. Active Learning for Regression Problems with Ensemble Methods. In: Schulte H, Hoffmann F, Mikut R, eds. Proceedings - 33. Workshop Computational Intelligence. Karlsruher Institut für Technologie (KIT); 2023:9-29. doi:10.5445/KSP/1000162754
HSBI-PUB | DOI | Download (ext.)
 
[1]
2021 | Artikel | FH-PUB-ID: 6498 | OA
Guss WH, Milani S, Topin N, et al. Towards robust and domain agnostic reinforcement learning competitions. arXiv. 2021. doi:10.48550/ARXIV.2106.03748
HSBI-PUB | DOI | Download (ext.)
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: AMA

Export / Einbettung