Please note that HSBI-PUB no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
3719 Publikationen
2023 | Artikel | FH-PUB-ID: 4446
Madeira Firmino, N., & Bauknecht, J. (2023). Gleich nach der Pflege kommt die Kita. Psychische und emotionale Erschöpfung bei Fachkräften. Krippenkinder, (5), 24–29.
HSBI-PUB
2023 | Kurzbeitrag Konferenz | FH-PUB-ID: 4431 |
Eisfeld, M. (2023). Nutzung von Künstlicher Intelligenz in der BIM-basierten Tragwerksplanung. Presented at the 20. buildingSMART-Anwendertag 2023, Stuttgart.
HSBI-PUB
| Dateien verfügbar
2023 | Artikel | FH-PUB-ID: 4564
Kirchhoff, S., Freţian, A. M., Schulenkorf, T., Bollweg, T. M., & Bauer, U. (2023). Unterrichtsprogramm zur Förderung von Mental Health Literacy. Prävention und Gesundheitsförderung, 18(3), 440–446. https://doi.org/10.1007/s11553-022-00982-w
HSBI-PUB
| DOI
2023 | Kurzbeitrag Konferenz | FH-PUB-ID: 4561 |
Schwan, L., Feige, M., Hütten, A., & Schöning, S. (2023). Equivalent Circuit for the Consideration of Frequency-Dependent Effects in Electronics Simulations of Induction Hobs. Presented at the DPG Frühjahrstagung Sektion Kondensierte Materie, Dresden. https://doi.org/10.57720/4561
HSBI-PUB
| Dateien verfügbar
| DOI
2023 | Konferenzbeitrag | FH-PUB-ID: 4378
Freiter, A., & Schwede, C. (2023). Integrating Scheduling of Logistic Support Processes in Agent-Based Industry 4.0 Assembly Simulation. In 2023 Winter Simulation Conference (WSC) (pp. 2112–2123). San Antonio, TX, USA: IEEE. https://doi.org/10.1109/WSC60868.2023.10408413
HSBI-PUB
| DOI
2023 | Diskussionspapier | FH-PUB-ID: 4331
Bonnin, G., Hirschfeld, G., Von Brachel, R., & Margraf, J. (2023). Code for: How happy is happy enough? A cross-cultural comparison of optimal cut points for the Positive Mental Health Scale. PsychArchives. https://doi.org/10.23668/PSYCHARCHIVES.12979
HSBI-PUB
| DOI
2023 | Artikel | FH-PUB-ID: 4285 |
Schnatmann, A. K., Schoden, F., Ehrmann, A., & Schwenzfeier-Hellkamp, E. (2023). R principles for circular economy in the textile industry – a mini-review. Communications in Development and Assembling of Textile Products, 4(2), 294–305. https://doi.org/10.25367/cdatp.2023.4.p295-305
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2023 | Lehrbuch | FH-PUB-ID: 4552
Horst, J., Gomeringer, R., Kilgus, R., Menges, V., Oesterle, S., Rapp, T., … Ziebart, J. R. (2023). Tabellenbuch Maschinenbau Hochschule. Haan-Gruiten: VERLAG EUROPA-LEHRMITTEL.
HSBI-PUB
2023 | Buchbeitrag | FH-PUB-ID: 3222
Sanaullah, S., Koravuna, S., Rückert, U., & Jungeblut, T. (2023). Streamlined Training of GCN for Node Classification with Automatic Loss Function and Optimizer Selection. In L. Iliadis, I. Maglogiannis, S. Alonso, C. Jayne, & E. Pimenidis (Eds.), Engineering Applications of Neural Networks. 24th International Conference, EAAAI/EANN 2023, León, Spain, June 14–17, 2023, Proceedings (pp. 191–202). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-34204-2_17
HSBI-PUB
| DOI
2023 | Artikel | FH-PUB-ID: 3482 |
Sanaullah, S., Koravuna, S., Rückert, U., & Jungeblut, T. (2023). Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim. International Journal of Neural Systems. https://doi.org/10.1142/S0129065723500442
HSBI-PUB
| DOI
| Download (ext.)
2023 | Artikel | FH-PUB-ID: 3572 |
Sanaullah, S., Koravuna, S., Rückert, U., & Jungeblut, T. (2023). Exploring spiking neural networks: a comprehensive analysis of mathematical models and applications. Frontiers in Computational Neuroscience, 17. https://doi.org/10.3389/fncom.2023.1215824
HSBI-PUB
| DOI
| Download (ext.)
2023 | Artikel | FH-PUB-ID: 3666
Koravuna, S., Rückert, U., & Jungeblut, T. (2023). Evaluating Spiking Neural Network Models: A Comparative Performance Analysis. Preprint. https://doi.org/10.13140/RG.2.2.21295.71847
HSBI-PUB
| DOI
2023 | Artikel | FH-PUB-ID: 3665 |
Sanaullah, S., Koravuna, S., Ruckert, U., & Jungeblut, T. (2023). Design-Space Exploration of SNN Models using Application-Specific Multi-Core Architectures. Preprint. https://doi.org/10.13140/RG.2.2.26328.88324
HSBI-PUB
| DOI
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 3644 |
Sanaullah, S., Koravuna, S., Rückert, U., & Jungeblut, T. (2023). Transforming Event-Based into Spike-Rate Datasets for Enhancing Neuronal Behavior Simulation to Bridging the Gap for SNNs. Presented at the International Conference on Computer Vision (ICCV) 2023, Paris France . https://doi.org/10.13140/RG.2.2.14469.32485
HSBI-PUB
| DOI
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 4207 |
Sanaullah, S., & Jungeblut, T. (2023). Analysis of MR Images for Early and Accurate Detection of Brain Tumor using Resource Efficient Simulator Brain Analysis. Presented at the 19th International Conference on Machine Learning and Data Mining MLDM, New York USA. https://doi.org/10.5281/zenodo.10457930
HSBI-PUB
| DOI
| Download (ext.)
2023 | Kurzbeitrag Konferenz | FH-PUB-ID: 4206 |
Sanaullah, S., Amanullah, A., Roy, K., Lee, J.-A., Chul-Jun, S., & Jungeblut, T. (2023). A Hybrid Spiking-Convolutional Neural Network Approach for Advancing High-Quality Image Inpainting. Presented at the International Conference on Computer Vision (ICCV) 2023, Paris France. https://doi.org/10.5281/zenodo.10458019
HSBI-PUB
| DOI
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 4205 |
Sanaullah, S., Koravuna, S., Rückert, U., & Jungeblut, T. (2023). A Novel Spike Vision Approach for Robust Multi-Object Detection using SNNs. Presented at the Conference: Novel Trends in Data Science 2023, Congressi Stefano Franscini at Monte Verità in Ticino, Switzerland. https://doi.org/10.5281/zenodo.10262228
HSBI-PUB
| DOI
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 4208
Koravuna, S., Sanaullah, S., Jungeblut, T., & Rückert, U. (2023). Digit Recognition Using Spiking Neural Networks on FPGA. In I. Rojas, G. Joya, & A. Catala (Eds.), Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I (pp. 406–417). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43085-5_32
HSBI-PUB
| DOI
2023 | Konferenzbeitrag | FH-PUB-ID: 3297 |
Schultenkämper, S., & Bäumer, F. (2023). Protecting Your Online Privacy: Insights on Digital Twins and Threat Detection. In IARIA (Ed.), The Fifteenth International Conference on Pervasive Patterns and Applications (PATTERNS 2023). Special Track DaMIA: Data Mining in Industrial Applications of Digital Twins. (pp. 2–5). IARIA.
HSBI-PUB
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 3296 |
Schultenkämper, S., & Bäumer, F. (2023). Looking for a Needle in a Haystack: How Can Vision-Language Understanding Help to Identify Privacy-Threatening Images on the Web. In IARIA (Ed.), ICIW 2023 : The Eighteenth International Conference on Internet and Web Applications and Services (pp. 2–6). Nizza.
HSBI-PUB
| Download (ext.)