63 Publikationen
2025 | Kurzbeitrag Konferenz | FH-PUB-ID: 6080
F. Jalil, J. Leuering, Q. A. Ahmed, W. Schenck, and T. Jungeblut, “NNXC: Neural Network Meets Approximate Computing,” presented at the KI und ihre Anwendungen – Aktuelle Forschungsarbeiten des wissenschaftlichen Nachwuchses, Bielefeld, 2025.
HSBI-PUB
2025 | Kurzbeitrag Konferenz | FH-PUB-ID: 6077
J. Leuering, F. Jalil, Q. A. Ahmed, W. Schenck, and T. Jungeblut, “Cognitive Edge Computing for Multi-Sensor Applications with Sparse Data and High Latency Requirements,” presented at the KI und ihre Anwendungen – Aktuelle Forschungsarbeiten des wissenschaftlichen Nachwuchses, Bielefeld.
HSBI-PUB
2025 | Artikel | FH-PUB-ID: 6244 |
M. Niederhaus, N. Migenda, J. Weller, M. Kohlhase, and W. Schenck, “Integrating Graph Retrieval-Augmented Generation into Prescriptive Recommender Systems,” Big Data and Cognitive Computing, vol. 9, no. 10, 2025.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2025 | Artikel | FH-PUB-ID: 6133 |
T. C. Herzig et al., “Softwaregestützte Analyse geriatrischer Entlassbriefe,” Zeitschrift für Gerontologie und Geriatrie, 2025.
HSBI-PUB
| DOI
| Download (ext.)
2024 | Konferenzbeitrag | FH-PUB-ID: 5494
J. M. Akay and W. Schenck, “Transferability of Non-contrastive Self-supervised Learning to Chronic Wound Image Recognition,” in Artificial Neural Networks and Machine Learning – ICANN 2024. 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part VIII, Lugano, Switzerland, 2024, pp. 427–444.
HSBI-PUB
| DOI
2024 | Artikel | FH-PUB-ID: 5500 |
Z. H. Shah et al., “Evaluation of Swin Transformer and knowledge transfer for denoising of super-resolution structured illumination microscopy data,” GigaScience, vol. 13, 2024.
HSBI-PUB
| DOI
| Download (ext.)
2024 | Buchbeitrag | FH-PUB-ID: 4915
J. Weller et al., “Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories,” in Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023, vol. 18, O. Niggemann, J. Beyerer, M. Krantz, and C. Kühnert, Eds. Cham: Springer Nature Switzerland, 2024, pp. 89–100.
HSBI-PUB
| DOI
2024 | Konferenzbeitrag | FH-PUB-ID: 4644
L. Klein, C. Ostrau, M. Thies, W. Schenck, and U. Rückert, “Exploratory Analysis of Machine Learning Methods for the Prognosis of Falls in Elderly Care Based on Accelerometer Data,” in Pervasive Computing Technologies for Healthcare. 17th EAI International Conference, PervasiveHealth 2023, Malmö, Sweden, November 27-29, 2023, Proceedings, Malmö, Schweden, 2024, pp. 423–437.
HSBI-PUB
| DOI
2023 | Artikel | FH-PUB-ID: 2774 |
A. Tharwat and W. Schenck, “A Survey on Active Learning: State-of-the-Art, Practical Challenges and Research Directions,” Mathematics, vol. 11, no. 4, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 4700
J. Weller, N. Migenda, A. Wegel, M. Kohlhase, W. Schenck, and R. Dumitrescu, “Conceptual Framework for Prescriptive Analytics Based on Decision Theory in Smart Factories,” in 2023 IEEE International Conference on Advances in Data-Driven Analytics And Intelligent Systems (ADACIS), Marrakesh, Morocco, 2023, pp. 1–7.
HSBI-PUB
| DOI
2023 | Artikel | FH-PUB-ID: 3453 |
N. Grimmelsmann, M. Mechtenberg, W. Schenck, H. G. Meyer, and A. Schneider, “sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters,” PLOS ONE, vol. 18, no. 8, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2775 |
A. Tharwat and W. Schenck, “A Novel Low-Query-Budget Active Learner with Pseudo-Labels for Imbalanced Data,” Mathematics, vol. 10, no. 7, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 1799 |
K. Vandevoorde, L. Vollenkemper, C. Schwan, M. Kohlhase, and W. Schenck, “Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks,” Sensors, vol. 22, no. 7, 2022.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2944 |
W. Zai El Amri, F. Reinhart, and W. Schenck, “Open set task augmentation facilitates generalization of deep neural networks trained on small data sets,” Neural Computing and Applications, vol. 34, no. 8, pp. 6067–6083, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2776 |
C. Schwan and W. Schenck, “Design of Interpretable Machine Learning Tasks for the Application to Industrial Order Picking,” in Kommunikation und Bildverarbeitung in der Automation. Ausgewählte Beiträge der Jahreskolloquien KommA und BVAu 2020, 2022, pp. 291–303.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Artikel | FH-PUB-ID: 1201 |
Z. H. Shah et al., “Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images,” Photonics Research, vol. 9, no. 5, 2021.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 2570
C. Hoppe, D. Pelkmann, N. Migenda, D. A. Hotte, and W. Schenck, “Towards Intelligent Legal Advisors for Document Retrieval and Question-Answering in German Legal Documents,” in 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA, USA, 2021, pp. 29–32.
HSBI-PUB
| DOI
2021 | Konferenzbeitrag | FH-PUB-ID: 2572
L. Steinmann, N. Migenda, T. Voigt, M. Kohlhase, and W. Schenck, “Variational Autoencoder based Novelty Detection for Real-World Time Series,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 1–7.
HSBI-PUB
| DOI
2020 | Konferenzbeitrag | FH-PUB-ID: 1207
C. Schwan and W. Schenck, “Visual Movement Prediction for Stable Grasp Point Detection,” in Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. Proceedings of the EANN 2020, Halkidiki, Greece, 2020, pp. 70–81.
HSBI-PUB
| DOI
2020 | Diskussionspapier | FH-PUB-ID: 2778 |
Z. H. Shah et al., Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Cold Spring Harbor Laboratory, 2020.
HSBI-PUB
| DOI
| Download (ext.)
2019 | Buchbeitrag | FH-PUB-ID: 1208
N. Migenda, R. Möller, and W. Schenck, “Adaptive Dimensionality Adjustment for Online ‘Principal Component Analysis,’” in Intelligent Data Engineering and Automated Learning – IDEAL 2019. 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I, H. Yin, D. Camacho, P. Tino, A. J. Tallón-Ballesteros, R. Menezes, and R. Allmendinger, Eds. Cham: Springer International Publishing, 2019, pp. 76–84.
HSBI-PUB
| DOI
2018 | Buchbeitrag | FH-PUB-ID: 1209 |
K. Grünberg and W. Schenck, “A Case Study on Benchmarking IoT Cloud Services,” in Cloud Computing – CLOUD 2018, M. Luo and L.-J. Zhang, Eds. Cham: Springer International Publishing, 2018, pp. 398–406.
HSBI-PUB
| DOI
| Download (ext.)
2017 | Artikel | FH-PUB-ID: 1210 |
S. Kunkel and W. Schenck, “The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code,” Frontiers in Neuroinformatics, vol. 11, 2017.
HSBI-PUB
| DOI
| Download (ext.)
2017 | Buch als Herausgeber | FH-PUB-ID: 1212 |
M. Butz, W. Schenck, and A. van Ooyen, Eds., Anatomy and Plasticity in Large-Scale Brain Models. Frontiers Media SA, 2017.
HSBI-PUB
| DOI
| Download (ext.)
2016 | Buchbeitrag | FH-PUB-ID: 1215
W. Schenck, S. El Sayed, M. Foszczynski, W. Homberg, and D. Pleiter, “Early Evaluation of the ‘Infinite Memory Engine’ Burst Buffer Solution,” in High Performance Computing, vol. vol 9945, M. Taufer, B. Mohr, and J. M. Kunkel, Eds. Cham: Springer International Publishing, 2016, pp. 604–615.
HSBI-PUB
| DOI
| Download (ext.)
2016 | Artikel | FH-PUB-ID: 1213 |
M. Butz, W. Schenck, and A. van Ooyen, “Editorial: Anatomy and Plasticity in Large-Scale Brain Models,” Frontiers in Neuroanatomy, vol. 10, 2016.
HSBI-PUB
| DOI
| Download (ext.)
2015 | Buchbeitrag | FH-PUB-ID: 1216
A. V. Adinetz et al., “Performance Evaluation of Scientific Applications on POWER8,” in High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation, vol. 8966, S. A. Jarvis, S. A. Wright, and S. D. Hammond, Eds. Cham: Springer International Publishing, 2015, pp. 24–45.
HSBI-PUB
| DOI
2013 | Artikel | FH-PUB-ID: 1217
W. Schenck, “Robot studies on saccade-triggered visual prediction,” New Ideas in Psychology, vol. 31, no. 3, pp. 221–238, 2013.
HSBI-PUB
| DOI
| Download (ext.)
2013 | Artikel | FH-PUB-ID: 1218
A. Kaiser, W. Schenck, and R. Möller, “Solving the correspondence problem in stereo vision by internal simulation,” Adaptive Behavior, vol. 21, no. 4, pp. 239–250, 2013.
HSBI-PUB
| DOI
| Download (ext.)
2011 | Artikel | FH-PUB-ID: 1219 |
W. Schenck, H. Hoffmann, and R. Möller, “Grasping of extrafoveal targets: A robotic model,” New Ideas in Psychology, vol. 29, no. 3, pp. 235–259, 2011.
HSBI-PUB
| DOI
| Download (ext.)
2011 | Artikel | FH-PUB-ID: 1220 |
W. Schenck, “Kinematic motor learning,” Connection Science, vol. 23, no. 4, pp. 239–283, 2011.
HSBI-PUB
| DOI
| Download (ext.)
2009 | Buchbeitrag | FH-PUB-ID: 1222
W. Schenck, “Space Perception through Visuokinesthetic Prediction,” in Anticipatory Behavior in Adaptive Learning Systems, vol. 5499, G. Pezzulo, M. V. Butz, O. Sigaud, and G. Baldassarre, Eds. Berlin, Heidelberg: Springer, 2009, pp. 247–266.
HSBI-PUB
| DOI
| Download (ext.)
2008 | Artikel | FH-PUB-ID: 1223 |
R. Möller and W. Schenck, “Bootstrapping Cognition from Behavior-A Computerized Thought Experiment,” Cognitive Science, vol. 32, no. 3, pp. 504–542, 2008.
HSBI-PUB
| DOI
| Download (ext.)
2007 | Artikel | FH-PUB-ID: 1225
T. Kollmeier, F. Röben, W. Schenck, and R. Möller, “Spectral contrasts for landmark navigation,” Journal of the Optical Society of America A, vol. 24, no. 1, pp. 1–10, 2007.
HSBI-PUB
| DOI
| Download (ext.)
2007 | Buchbeitrag | FH-PUB-ID: 1229
W. Schenck and R. Möller, “Training and Application of a Visual Forward Model for a Robot Camera Head,” in Anticipatory Behavior in Adaptive Learning Systems, vol. 4520, M. V. Butz, O. Sigaud, G. Pezzulo, and G. Baldassarre, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 153–169.
HSBI-PUB
| DOI
| Download (ext.)
2007 | Artikel | FH-PUB-ID: 1226
M. Kiefer, S. Schuch, W. Schenck, and K. Fiedler, “Mood States Modulate Activity in Semantic Brain Areas during Emotional Word Encoding,” Cerebral Cortex, vol. 17, no. 7, pp. 1516–1530, 2007.
HSBI-PUB
| DOI
| Download (ext.)
2007 | Artikel | FH-PUB-ID: 1224 |
M. Kiefer, S. Schuch, W. Schenck, and K. Fiedler, “Emotion and memory: Event-related potential indices predictive for subsequent successful memory depend on the emotional mood state,” Advances in Cognitive Psychology, vol. 3, no. 3, pp. 363–373, 2007.
HSBI-PUB
| DOI
| Download (ext.)
Suche
Publikationen filtern
Darstellung / Sortierung
Export / Einbettung
63 Publikationen
2025 | Kurzbeitrag Konferenz | FH-PUB-ID: 6080
F. Jalil, J. Leuering, Q. A. Ahmed, W. Schenck, and T. Jungeblut, “NNXC: Neural Network Meets Approximate Computing,” presented at the KI und ihre Anwendungen – Aktuelle Forschungsarbeiten des wissenschaftlichen Nachwuchses, Bielefeld, 2025.
HSBI-PUB
2025 | Kurzbeitrag Konferenz | FH-PUB-ID: 6077
J. Leuering, F. Jalil, Q. A. Ahmed, W. Schenck, and T. Jungeblut, “Cognitive Edge Computing for Multi-Sensor Applications with Sparse Data and High Latency Requirements,” presented at the KI und ihre Anwendungen – Aktuelle Forschungsarbeiten des wissenschaftlichen Nachwuchses, Bielefeld.
HSBI-PUB
2025 | Artikel | FH-PUB-ID: 6244 |
M. Niederhaus, N. Migenda, J. Weller, M. Kohlhase, and W. Schenck, “Integrating Graph Retrieval-Augmented Generation into Prescriptive Recommender Systems,” Big Data and Cognitive Computing, vol. 9, no. 10, 2025.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2025 | Artikel | FH-PUB-ID: 6133 |
T. C. Herzig et al., “Softwaregestützte Analyse geriatrischer Entlassbriefe,” Zeitschrift für Gerontologie und Geriatrie, 2025.
HSBI-PUB
| DOI
| Download (ext.)
2024 | Konferenzbeitrag | FH-PUB-ID: 5494
J. M. Akay and W. Schenck, “Transferability of Non-contrastive Self-supervised Learning to Chronic Wound Image Recognition,” in Artificial Neural Networks and Machine Learning – ICANN 2024. 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part VIII, Lugano, Switzerland, 2024, pp. 427–444.
HSBI-PUB
| DOI
2024 | Artikel | FH-PUB-ID: 5500 |
Z. H. Shah et al., “Evaluation of Swin Transformer and knowledge transfer for denoising of super-resolution structured illumination microscopy data,” GigaScience, vol. 13, 2024.
HSBI-PUB
| DOI
| Download (ext.)
2024 | Buchbeitrag | FH-PUB-ID: 4915
J. Weller et al., “Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories,” in Machine Learning for Cyber-Physical Systems. Selected papers from the International Conference ML4CPS 2023, vol. 18, O. Niggemann, J. Beyerer, M. Krantz, and C. Kühnert, Eds. Cham: Springer Nature Switzerland, 2024, pp. 89–100.
HSBI-PUB
| DOI
2024 | Konferenzbeitrag | FH-PUB-ID: 4644
L. Klein, C. Ostrau, M. Thies, W. Schenck, and U. Rückert, “Exploratory Analysis of Machine Learning Methods for the Prognosis of Falls in Elderly Care Based on Accelerometer Data,” in Pervasive Computing Technologies for Healthcare. 17th EAI International Conference, PervasiveHealth 2023, Malmö, Sweden, November 27-29, 2023, Proceedings, Malmö, Schweden, 2024, pp. 423–437.
HSBI-PUB
| DOI
2023 | Artikel | FH-PUB-ID: 2774 |
A. Tharwat and W. Schenck, “A Survey on Active Learning: State-of-the-Art, Practical Challenges and Research Directions,” Mathematics, vol. 11, no. 4, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2023 | Konferenzbeitrag | FH-PUB-ID: 4700
J. Weller, N. Migenda, A. Wegel, M. Kohlhase, W. Schenck, and R. Dumitrescu, “Conceptual Framework for Prescriptive Analytics Based on Decision Theory in Smart Factories,” in 2023 IEEE International Conference on Advances in Data-Driven Analytics And Intelligent Systems (ADACIS), Marrakesh, Morocco, 2023, pp. 1–7.
HSBI-PUB
| DOI
2023 | Artikel | FH-PUB-ID: 3453 |
N. Grimmelsmann, M. Mechtenberg, W. Schenck, H. G. Meyer, and A. Schneider, “sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters,” PLOS ONE, vol. 18, no. 8, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2775 |
A. Tharwat and W. Schenck, “A Novel Low-Query-Budget Active Learner with Pseudo-Labels for Imbalanced Data,” Mathematics, vol. 10, no. 7, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 1799 |
K. Vandevoorde, L. Vollenkemper, C. Schwan, M. Kohlhase, and W. Schenck, “Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks,” Sensors, vol. 22, no. 7, 2022.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2944 |
W. Zai El Amri, F. Reinhart, and W. Schenck, “Open set task augmentation facilitates generalization of deep neural networks trained on small data sets,” Neural Computing and Applications, vol. 34, no. 8, pp. 6067–6083, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2776 |
C. Schwan and W. Schenck, “Design of Interpretable Machine Learning Tasks for the Application to Industrial Order Picking,” in Kommunikation und Bildverarbeitung in der Automation. Ausgewählte Beiträge der Jahreskolloquien KommA und BVAu 2020, 2022, pp. 291–303.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Artikel | FH-PUB-ID: 1201 |
Z. H. Shah et al., “Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images,” Photonics Research, vol. 9, no. 5, 2021.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 2570
C. Hoppe, D. Pelkmann, N. Migenda, D. A. Hotte, and W. Schenck, “Towards Intelligent Legal Advisors for Document Retrieval and Question-Answering in German Legal Documents,” in 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA, USA, 2021, pp. 29–32.
HSBI-PUB
| DOI
2021 | Konferenzbeitrag | FH-PUB-ID: 2572
L. Steinmann, N. Migenda, T. Voigt, M. Kohlhase, and W. Schenck, “Variational Autoencoder based Novelty Detection for Real-World Time Series,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 1–7.
HSBI-PUB
| DOI
2020 | Konferenzbeitrag | FH-PUB-ID: 1207
C. Schwan and W. Schenck, “Visual Movement Prediction for Stable Grasp Point Detection,” in Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. Proceedings of the EANN 2020, Halkidiki, Greece, 2020, pp. 70–81.
HSBI-PUB
| DOI
2020 | Diskussionspapier | FH-PUB-ID: 2778 |
Z. H. Shah et al., Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Cold Spring Harbor Laboratory, 2020.
HSBI-PUB
| DOI
| Download (ext.)
2019 | Buchbeitrag | FH-PUB-ID: 1208
N. Migenda, R. Möller, and W. Schenck, “Adaptive Dimensionality Adjustment for Online ‘Principal Component Analysis,’” in Intelligent Data Engineering and Automated Learning – IDEAL 2019. 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I, H. Yin, D. Camacho, P. Tino, A. J. Tallón-Ballesteros, R. Menezes, and R. Allmendinger, Eds. Cham: Springer International Publishing, 2019, pp. 76–84.
HSBI-PUB
| DOI
2018 | Buchbeitrag | FH-PUB-ID: 1209 |
K. Grünberg and W. Schenck, “A Case Study on Benchmarking IoT Cloud Services,” in Cloud Computing – CLOUD 2018, M. Luo and L.-J. Zhang, Eds. Cham: Springer International Publishing, 2018, pp. 398–406.
HSBI-PUB
| DOI
| Download (ext.)
2017 | Artikel | FH-PUB-ID: 1210 |
S. Kunkel and W. Schenck, “The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code,” Frontiers in Neuroinformatics, vol. 11, 2017.
HSBI-PUB
| DOI
| Download (ext.)
2017 | Buch als Herausgeber | FH-PUB-ID: 1212 |
M. Butz, W. Schenck, and A. van Ooyen, Eds., Anatomy and Plasticity in Large-Scale Brain Models. Frontiers Media SA, 2017.
HSBI-PUB
| DOI
| Download (ext.)
2016 | Buchbeitrag | FH-PUB-ID: 1215
W. Schenck, S. El Sayed, M. Foszczynski, W. Homberg, and D. Pleiter, “Early Evaluation of the ‘Infinite Memory Engine’ Burst Buffer Solution,” in High Performance Computing, vol. vol 9945, M. Taufer, B. Mohr, and J. M. Kunkel, Eds. Cham: Springer International Publishing, 2016, pp. 604–615.
HSBI-PUB
| DOI
| Download (ext.)
2016 | Artikel | FH-PUB-ID: 1213 |
M. Butz, W. Schenck, and A. van Ooyen, “Editorial: Anatomy and Plasticity in Large-Scale Brain Models,” Frontiers in Neuroanatomy, vol. 10, 2016.
HSBI-PUB
| DOI
| Download (ext.)
2015 | Buchbeitrag | FH-PUB-ID: 1216
A. V. Adinetz et al., “Performance Evaluation of Scientific Applications on POWER8,” in High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation, vol. 8966, S. A. Jarvis, S. A. Wright, and S. D. Hammond, Eds. Cham: Springer International Publishing, 2015, pp. 24–45.
HSBI-PUB
| DOI
2013 | Artikel | FH-PUB-ID: 1217
W. Schenck, “Robot studies on saccade-triggered visual prediction,” New Ideas in Psychology, vol. 31, no. 3, pp. 221–238, 2013.
HSBI-PUB
| DOI
| Download (ext.)
2013 | Artikel | FH-PUB-ID: 1218
A. Kaiser, W. Schenck, and R. Möller, “Solving the correspondence problem in stereo vision by internal simulation,” Adaptive Behavior, vol. 21, no. 4, pp. 239–250, 2013.
HSBI-PUB
| DOI
| Download (ext.)
2011 | Artikel | FH-PUB-ID: 1219 |
W. Schenck, H. Hoffmann, and R. Möller, “Grasping of extrafoveal targets: A robotic model,” New Ideas in Psychology, vol. 29, no. 3, pp. 235–259, 2011.
HSBI-PUB
| DOI
| Download (ext.)
2011 | Artikel | FH-PUB-ID: 1220 |
W. Schenck, “Kinematic motor learning,” Connection Science, vol. 23, no. 4, pp. 239–283, 2011.
HSBI-PUB
| DOI
| Download (ext.)
2009 | Buchbeitrag | FH-PUB-ID: 1222
W. Schenck, “Space Perception through Visuokinesthetic Prediction,” in Anticipatory Behavior in Adaptive Learning Systems, vol. 5499, G. Pezzulo, M. V. Butz, O. Sigaud, and G. Baldassarre, Eds. Berlin, Heidelberg: Springer, 2009, pp. 247–266.
HSBI-PUB
| DOI
| Download (ext.)
2008 | Artikel | FH-PUB-ID: 1223 |
R. Möller and W. Schenck, “Bootstrapping Cognition from Behavior-A Computerized Thought Experiment,” Cognitive Science, vol. 32, no. 3, pp. 504–542, 2008.
HSBI-PUB
| DOI
| Download (ext.)
2007 | Artikel | FH-PUB-ID: 1225
T. Kollmeier, F. Röben, W. Schenck, and R. Möller, “Spectral contrasts for landmark navigation,” Journal of the Optical Society of America A, vol. 24, no. 1, pp. 1–10, 2007.
HSBI-PUB
| DOI
| Download (ext.)
2007 | Buchbeitrag | FH-PUB-ID: 1229
W. Schenck and R. Möller, “Training and Application of a Visual Forward Model for a Robot Camera Head,” in Anticipatory Behavior in Adaptive Learning Systems, vol. 4520, M. V. Butz, O. Sigaud, G. Pezzulo, and G. Baldassarre, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 153–169.
HSBI-PUB
| DOI
| Download (ext.)
2007 | Artikel | FH-PUB-ID: 1226
M. Kiefer, S. Schuch, W. Schenck, and K. Fiedler, “Mood States Modulate Activity in Semantic Brain Areas during Emotional Word Encoding,” Cerebral Cortex, vol. 17, no. 7, pp. 1516–1530, 2007.
HSBI-PUB
| DOI
| Download (ext.)
2007 | Artikel | FH-PUB-ID: 1224 |
M. Kiefer, S. Schuch, W. Schenck, and K. Fiedler, “Emotion and memory: Event-related potential indices predictive for subsequent successful memory depend on the emotional mood state,” Advances in Cognitive Psychology, vol. 3, no. 3, pp. 363–373, 2007.
HSBI-PUB
| DOI
| Download (ext.)