42 Publikationen
2023 | Artikel | FH-PUB-ID: 3453
N. Grimmelsmann, M. Mechtenberg, W. Schenck, H. G. Meyer, and A. Schneider, “sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters,” PLOS ONE, vol. 18, no. 8, 2023.
HSBI-PUB
| DOI
2023 | Artikel | FH-PUB-ID: 2774 |

A. Tharwat and W. Schenck, “A Survey on Active Learning: State-of-the-Art, Practical Challenges and Research Directions,” Mathematics, vol. 11, no. 4, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2944 |

W. Zai El Amri, F. Reinhart, and W. Schenck, “Open set task augmentation facilitates generalization of deep neural networks trained on small data sets,” Neural Computing and Applications, vol. 34, no. 8, pp. 6067–6083, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2776 |

C. Schwan and W. Schenck, “Design of Interpretable Machine Learning Tasks for the Application to Industrial Order Picking,” in Kommunikation und Bildverarbeitung in der Automation. Ausgewählte Beiträge der Jahreskolloquien KommA und BVAu 2020, 2022, pp. 291–303.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2775 |

A. Tharwat and W. Schenck, “A Novel Low-Query-Budget Active Learner with Pseudo-Labels for Imbalanced Data,” Mathematics, vol. 10, no. 7, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 1799 |

K. Vandevoorde, L. Vollenkemper, C. Schwan, M. Kohlhase, and W. Schenck, “Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks,” Sensors, vol. 22, no. 7, 2022.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2021 | Artikel | FH-PUB-ID: 1201 |

Z. H. Shah et al., “Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images,” Photonics Research, vol. 9, no. 5, 2021.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 2570
C. Hoppe, D. Pelkmann, N. Migenda, D. A. Hotte, and W. Schenck, “Towards Intelligent Legal Advisors for Document Retrieval and Question-Answering in German Legal Documents,” in 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA, USA, 2021, pp. 29–32.
HSBI-PUB
| DOI
2021 | Konferenzbeitrag | FH-PUB-ID: 2572
L. Steinmann, N. Migenda, T. Voigt, M. Kohlhase, and W. Schenck, “Variational Autoencoder based Novelty Detection for Real-World Time Series,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 1–7.
HSBI-PUB
| DOI
2020 | Diskussionspapier | FH-PUB-ID: 2778 |

Z. H. Shah et al., Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Cold Spring Harbor Laboratory, 2020.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Buchbeitrag | FH-PUB-ID: 1207
C. Schwan and W. Schenck, “Visual Movement Prediction for Stable Grasp Point Detection,” in Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. Proceedings of the EANN 2020, L. Iliadis, P. P. Angelov, C. Jayne, and E. Pimenidis, Eds. Cham: Springer International Publishing, 2020, pp. 70–81.
HSBI-PUB
| DOI
2019 | Buchbeitrag | FH-PUB-ID: 1208
N. Migenda, R. Möller, and W. Schenck, “Adaptive Dimensionality Adjustment for Online ‘Principal Component Analysis,’” in Intelligent Data Engineering and Automated Learning – IDEAL 2019. 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I, H. Yin, D. Camacho, P. Tino, A. J. Tallón-Ballesteros, R. Menezes, and R. Allmendinger, Eds. Cham: Springer International Publishing, 2019, pp. 76–84.
HSBI-PUB
| DOI
2016 | Buchbeitrag | FH-PUB-ID: 1215
W. Schenck, S. El Sayed, M. Foszczynski, W. Homberg, and D. Pleiter, “Early Evaluation of the ‘Infinite Memory Engine’ Burst Buffer Solution,” in High Performance Computing, M. Taufer, B. Mohr, and J. M. Kunkel, Eds. Cham: Springer International Publishing, 2016, pp. 604–615.
HSBI-PUB
| DOI
2015 | Buchbeitrag | FH-PUB-ID: 1216
A. V. Adinetz et al., “Performance Evaluation of Scientific Applications on POWER8,” in High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation, S. A. Jarvis, S. A. Wright, and S. D. Hammond, Eds. Cham: Springer International Publishing, 2015, pp. 24–45.
HSBI-PUB
| DOI
2009 | Buchbeitrag | FH-PUB-ID: 1222
W. Schenck, “Space Perception through Visuokinesthetic Prediction,” in Anticipatory Behavior in Adaptive Learning Systems, G. Pezzulo, M. V. Butz, O. Sigaud, and G. Baldassarre, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 247–266.
HSBI-PUB
| DOI
2007 | Buchbeitrag | FH-PUB-ID: 1229
W. Schenck and R. Möller, “Training and Application of a Visual Forward Model for a Robot Camera Head,” in Anticipatory Behavior in Adaptive Learning Systems, M. V. Butz, O. Sigaud, G. Pezzulo, and G. Baldassarre, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 153–169.
HSBI-PUB
| DOI
Suche
Publikationen filtern
Darstellung / Sortierung
Export / Einbettung
42 Publikationen
2023 | Artikel | FH-PUB-ID: 3453
N. Grimmelsmann, M. Mechtenberg, W. Schenck, H. G. Meyer, and A. Schneider, “sEMG-based prediction of human forearm movements utilizing a biomechanical model based on individual anatomical/ physiological measures and a reduced set of optimization parameters,” PLOS ONE, vol. 18, no. 8, 2023.
HSBI-PUB
| DOI
2023 | Artikel | FH-PUB-ID: 2774 |

A. Tharwat and W. Schenck, “A Survey on Active Learning: State-of-the-Art, Practical Challenges and Research Directions,” Mathematics, vol. 11, no. 4, 2023.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2944 |

W. Zai El Amri, F. Reinhart, and W. Schenck, “Open set task augmentation facilitates generalization of deep neural networks trained on small data sets,” Neural Computing and Applications, vol. 34, no. 8, pp. 6067–6083, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Konferenzbeitrag | FH-PUB-ID: 2776 |

C. Schwan and W. Schenck, “Design of Interpretable Machine Learning Tasks for the Application to Industrial Order Picking,” in Kommunikation und Bildverarbeitung in der Automation. Ausgewählte Beiträge der Jahreskolloquien KommA und BVAu 2020, 2022, pp. 291–303.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 2775 |

A. Tharwat and W. Schenck, “A Novel Low-Query-Budget Active Learner with Pseudo-Labels for Imbalanced Data,” Mathematics, vol. 10, no. 7, 2022.
HSBI-PUB
| DOI
| Download (ext.)
2022 | Artikel | FH-PUB-ID: 1799 |

K. Vandevoorde, L. Vollenkemper, C. Schwan, M. Kohlhase, and W. Schenck, “Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks,” Sensors, vol. 22, no. 7, 2022.
HSBI-PUB
| Dateien verfügbar
| DOI
| Download (ext.)
2021 | Artikel | FH-PUB-ID: 1201 |

Z. H. Shah et al., “Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images,” Photonics Research, vol. 9, no. 5, 2021.
HSBI-PUB
| DOI
| Download (ext.)
2021 | Konferenzbeitrag | FH-PUB-ID: 2570
C. Hoppe, D. Pelkmann, N. Migenda, D. A. Hotte, and W. Schenck, “Towards Intelligent Legal Advisors for Document Retrieval and Question-Answering in German Legal Documents,” in 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA, USA, 2021, pp. 29–32.
HSBI-PUB
| DOI
2021 | Konferenzbeitrag | FH-PUB-ID: 2572
L. Steinmann, N. Migenda, T. Voigt, M. Kohlhase, and W. Schenck, “Variational Autoencoder based Novelty Detection for Real-World Time Series,” in 2021 3rd International Conference on Management Science and Industrial Engineering, Osaka Japan, 2021, pp. 1–7.
HSBI-PUB
| DOI
2020 | Diskussionspapier | FH-PUB-ID: 2778 |

Z. H. Shah et al., Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Cold Spring Harbor Laboratory, 2020.
HSBI-PUB
| DOI
| Download (ext.)
2020 | Buchbeitrag | FH-PUB-ID: 1207
C. Schwan and W. Schenck, “Visual Movement Prediction for Stable Grasp Point Detection,” in Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. Proceedings of the EANN 2020, L. Iliadis, P. P. Angelov, C. Jayne, and E. Pimenidis, Eds. Cham: Springer International Publishing, 2020, pp. 70–81.
HSBI-PUB
| DOI
2019 | Buchbeitrag | FH-PUB-ID: 1208
N. Migenda, R. Möller, and W. Schenck, “Adaptive Dimensionality Adjustment for Online ‘Principal Component Analysis,’” in Intelligent Data Engineering and Automated Learning – IDEAL 2019. 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I, H. Yin, D. Camacho, P. Tino, A. J. Tallón-Ballesteros, R. Menezes, and R. Allmendinger, Eds. Cham: Springer International Publishing, 2019, pp. 76–84.
HSBI-PUB
| DOI
2016 | Buchbeitrag | FH-PUB-ID: 1215
W. Schenck, S. El Sayed, M. Foszczynski, W. Homberg, and D. Pleiter, “Early Evaluation of the ‘Infinite Memory Engine’ Burst Buffer Solution,” in High Performance Computing, M. Taufer, B. Mohr, and J. M. Kunkel, Eds. Cham: Springer International Publishing, 2016, pp. 604–615.
HSBI-PUB
| DOI
2015 | Buchbeitrag | FH-PUB-ID: 1216
A. V. Adinetz et al., “Performance Evaluation of Scientific Applications on POWER8,” in High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation, S. A. Jarvis, S. A. Wright, and S. D. Hammond, Eds. Cham: Springer International Publishing, 2015, pp. 24–45.
HSBI-PUB
| DOI
2009 | Buchbeitrag | FH-PUB-ID: 1222
W. Schenck, “Space Perception through Visuokinesthetic Prediction,” in Anticipatory Behavior in Adaptive Learning Systems, G. Pezzulo, M. V. Butz, O. Sigaud, and G. Baldassarre, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 247–266.
HSBI-PUB
| DOI
2007 | Buchbeitrag | FH-PUB-ID: 1229
W. Schenck and R. Möller, “Training and Application of a Visual Forward Model for a Robot Camera Head,” in Anticipatory Behavior in Adaptive Learning Systems, M. V. Butz, O. Sigaud, G. Pezzulo, and G. Baldassarre, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 153–169.
HSBI-PUB
| DOI